(Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model

We study the motion of a classical particle subject to anisotropic harmonic forces and constrained to move on the S<sub>N-1</sub> sphere. In the integrable-systems literature this problem is known as the Neumann model. We choose the spring constants in a way that makes the connection wit...

Descripción completa

Detalles Bibliográficos
Autores principales: Barbier, Damien, Cugliandolo, Leticia F., Lozano, Gustavo S., Nessi, Emilio Nicolás
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125577
Aporte de:
id I19-R120-10915-125577
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
Physics
particles
anisotropic harmonic forces
Neumann model
Generalized Gibbs Ensemble
spellingShingle Ciencias Exactas
Física
Physics
particles
anisotropic harmonic forces
Neumann model
Generalized Gibbs Ensemble
Barbier, Damien
Cugliandolo, Leticia F.
Lozano, Gustavo S.
Nessi, Emilio Nicolás
(Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
topic_facet Ciencias Exactas
Física
Physics
particles
anisotropic harmonic forces
Neumann model
Generalized Gibbs Ensemble
description We study the motion of a classical particle subject to anisotropic harmonic forces and constrained to move on the S<sub>N-1</sub> sphere. In the integrable-systems literature this problem is known as the Neumann model. We choose the spring constants in a way that makes the connection with the so-called p = 2 spherical disordered system transparent. We tackle the problem in the N → ∞ limit by introducing a soft version in which the spherical constraint is imposed only on average over initial conditions. We show that the Generalized Gibbs Ensemble, constructed with N conserved charges in involution, captures the long-time averages of all relevant observables of the soft model after sudden changes in the parameters (quenches). We reveal the full dynamic phase diagram with four different phases in which the particles' position and momentum are both extended, only the position quasi-condenses or condenses, and both condense. The scaling properties of the fluctuations allow us to establish in which of these cases the strict and soft spherical constraints are equivalent. We thus confirm the validity of the GGE hypothesis for the Neumann model on a large portion of the dynamic phase diagram.
format Articulo
Preprint
author Barbier, Damien
Cugliandolo, Leticia F.
Lozano, Gustavo S.
Nessi, Emilio Nicolás
author_facet Barbier, Damien
Cugliandolo, Leticia F.
Lozano, Gustavo S.
Nessi, Emilio Nicolás
author_sort Barbier, Damien
title (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
title_short (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
title_full (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
title_fullStr (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
title_full_unstemmed (Non equilibrium) Thermodynamics of Integrable models: The Generalized Gibbs Ensemble description of the classical Neumann Model
title_sort (non equilibrium) thermodynamics of integrable models: the generalized gibbs ensemble description of the classical neumann model
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/125577
work_keys_str_mv AT barbierdamien nonequilibriumthermodynamicsofintegrablemodelsthegeneralizedgibbsensembledescriptionoftheclassicalneumannmodel
AT cugliandololeticiaf nonequilibriumthermodynamicsofintegrablemodelsthegeneralizedgibbsensembledescriptionoftheclassicalneumannmodel
AT lozanogustavos nonequilibriumthermodynamicsofintegrablemodelsthegeneralizedgibbsensembledescriptionoftheclassicalneumannmodel
AT nessiemilionicolas nonequilibriumthermodynamicsofintegrablemodelsthegeneralizedgibbsensembledescriptionoftheclassicalneumannmodel
bdutipo_str Repositorios
_version_ 1764820451902619649