Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation
It is believed that the canonical gravitational partition function Z associated to the classical Boltzmann–Gibbs (BG) distribution e − β H Z cannot be constructed because the integral needed for building up Z includes an exponential and thus diverges at the origin. We show here that, by recourse to...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2018
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/125563 |
| Aporte de: |
| id |
I19-R120-10915-125563 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Boltzmann-Gibbs distribution Divergences Dimensional regularization Specific heat |
| spellingShingle |
Física Boltzmann-Gibbs distribution Divergences Dimensional regularization Specific heat Zamora, Darío Javier Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo Luís Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| topic_facet |
Física Boltzmann-Gibbs distribution Divergences Dimensional regularization Specific heat |
| description |
It is believed that the canonical gravitational partition function Z associated to the classical Boltzmann–Gibbs (BG) distribution e − β H Z cannot be constructed because the integral needed for building up Z includes an exponential and thus diverges at the origin. We show here that, by recourse to (1) the analytical extension treatment obtained for the first time ever, by Gradshteyn and Rizhik, via an appropriate formula for such case and (2) the dimensional regularization approach of Bollini and Giambiagi’s (DR), one can indeed obtain finite gravitational results employing the BG distribution. The BG treatment is considerably more involved than its Tsallis counterpart. The latter needs only dimensional regularization, the former requires, in addition, analytical extension. |
| format |
Articulo Preprint |
| author |
Zamora, Darío Javier Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo Luís |
| author_facet |
Zamora, Darío Javier Rocca, Mario Carlos Plastino, Ángel Luis Ferri, Gustavo Luís |
| author_sort |
Zamora, Darío Javier |
| title |
Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| title_short |
Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| title_full |
Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| title_fullStr |
Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| title_full_unstemmed |
Dimensionally regularized Boltzmann–Gibbs statistical mechanics and two-body Newton’s gravitation |
| title_sort |
dimensionally regularized boltzmann–gibbs statistical mechanics and two-body newton’s gravitation |
| publishDate |
2018 |
| url |
http://sedici.unlp.edu.ar/handle/10915/125563 |
| work_keys_str_mv |
AT zamoradariojavier dimensionallyregularizedboltzmanngibbsstatisticalmechanicsandtwobodynewtonsgravitation AT roccamariocarlos dimensionallyregularizedboltzmanngibbsstatisticalmechanicsandtwobodynewtonsgravitation AT plastinoangelluis dimensionallyregularizedboltzmanngibbsstatisticalmechanicsandtwobodynewtonsgravitation AT ferrigustavoluis dimensionallyregularizedboltzmanngibbsstatisticalmechanicsandtwobodynewtonsgravitation |
| bdutipo_str |
Repositorios |
| _version_ |
1764820451869065216 |