Classical partition function for non-relativistic gravity

We considered the canonical gravitational partition function Z associated to the classical Boltzmann–Gibbs (BG) distribution e−βHZ. It is popularly thought that it cannot be built up because the integral involved in constructing Z diverges at the origin. Contrariwise, it was shown in (Physica A 497...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Hameeda, Mir, Plastino, Ángel Luis, Rocca, Mario Carlos, Zamora, Javier
Formato: Articulo
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125411
https://www.mdpi.com/2075-1680/10/2/121
Aporte de:
id I19-R120-10915-125411
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Partition functions
Analytical extensions
Guelfand’s and gradshteyn’s
Classical gravity
spellingShingle Física
Partition functions
Analytical extensions
Guelfand’s and gradshteyn’s
Classical gravity
Hameeda, Mir
Plastino, Ángel Luis
Rocca, Mario Carlos
Zamora, Javier
Classical partition function for non-relativistic gravity
topic_facet Física
Partition functions
Analytical extensions
Guelfand’s and gradshteyn’s
Classical gravity
description We considered the canonical gravitational partition function Z associated to the classical Boltzmann–Gibbs (BG) distribution e−βHZ. It is popularly thought that it cannot be built up because the integral involved in constructing Z diverges at the origin. Contrariwise, it was shown in (Physica A 497 (2018) 310), by appeal to sophisticated mathematics developed in the second half of the last century, that this is not so. Z can indeed be computed by recourse to (A) the analytical extension treatments of Gradshteyn and Rizhik and Guelfand and Shilov, that permit tackling some divergent integrals and (B) the dimensional regularization approach. Only one special instance was discussed in the above reference. In this work, we obtain the classical partition function for Newton’s gravity in the four cases that immediately come to mind.
format Articulo
Articulo
author Hameeda, Mir
Plastino, Ángel Luis
Rocca, Mario Carlos
Zamora, Javier
author_facet Hameeda, Mir
Plastino, Ángel Luis
Rocca, Mario Carlos
Zamora, Javier
author_sort Hameeda, Mir
title Classical partition function for non-relativistic gravity
title_short Classical partition function for non-relativistic gravity
title_full Classical partition function for non-relativistic gravity
title_fullStr Classical partition function for non-relativistic gravity
title_full_unstemmed Classical partition function for non-relativistic gravity
title_sort classical partition function for non-relativistic gravity
publishDate 2021
url http://sedici.unlp.edu.ar/handle/10915/125411
https://www.mdpi.com/2075-1680/10/2/121
work_keys_str_mv AT hameedamir classicalpartitionfunctionfornonrelativisticgravity
AT plastinoangelluis classicalpartitionfunctionfornonrelativisticgravity
AT roccamariocarlos classicalpartitionfunctionfornonrelativisticgravity
AT zamorajavier classicalpartitionfunctionfornonrelativisticgravity
bdutipo_str Repositorios
_version_ 1764820451615309828