Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction
On the two-dimensional non-linear Σ-model describing a ferromagnet with Dzyaloshinskii-Moriya interaction, we build three families of exact static solutions depending on a single Cartesian variable. One of them describes a clockwise helix configuration, that characterizes the ground state of the sys...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
2019
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/125364 |
| Aporte de: |
| id |
I19-R120-10915-125364 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Magnetic field Physics Helix Cartesian coordinate system Degeneracy (mathematics) Excited state Variable (mathematics) Coupling (probability) Mathematical physics Ground state Coupling Classical mechanics |
| spellingShingle |
Física Magnetic field Physics Helix Cartesian coordinate system Degeneracy (mathematics) Excited state Variable (mathematics) Coupling (probability) Mathematical physics Ground state Coupling Classical mechanics Grandi, Nicolás Esteban Lagos, Marcela Oliva, Julio Vera, Aldo Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| topic_facet |
Física Magnetic field Physics Helix Cartesian coordinate system Degeneracy (mathematics) Excited state Variable (mathematics) Coupling (probability) Mathematical physics Ground state Coupling Classical mechanics |
| description |
On the two-dimensional non-linear Σ-model describing a ferromagnet with Dzyaloshinskii-Moriya interaction, we build three families of exact static solutions depending on a single Cartesian variable. One of them describes a clockwise helix configuration, that characterizes the ground state of the system. A second one corresponds to a counterclockwise helix, representing an excited state. These two families of solutions are parameterized by a continuous parameter that depends on the magnetic field and the Dzyaloshinskii-Moriya coupling. Finally, the third family exists only for isolated values of the same parameter, corresponding to a discrete family of Viviani curves on the target sphere. The degeneracy of the resulting spectrum suggests that an approximate symmetry may emerge at specific values of the magnetic field, at which additional solutions could then exist. |
| format |
Articulo Preprint |
| author |
Grandi, Nicolás Esteban Lagos, Marcela Oliva, Julio Vera, Aldo |
| author_facet |
Grandi, Nicolás Esteban Lagos, Marcela Oliva, Julio Vera, Aldo |
| author_sort |
Grandi, Nicolás Esteban |
| title |
Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| title_short |
Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| title_full |
Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| title_fullStr |
Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| title_full_unstemmed |
Exact solutions for a ferromagnet with Dzyaloshinskii-Moriya interaction |
| title_sort |
exact solutions for a ferromagnet with dzyaloshinskii-moriya interaction |
| publishDate |
2019 |
| url |
http://sedici.unlp.edu.ar/handle/10915/125364 |
| work_keys_str_mv |
AT grandinicolasesteban exactsolutionsforaferromagnetwithdzyaloshinskiimoriyainteraction AT lagosmarcela exactsolutionsforaferromagnetwithdzyaloshinskiimoriyainteraction AT olivajulio exactsolutionsforaferromagnetwithdzyaloshinskiimoriyainteraction AT veraaldo exactsolutionsforaferromagnetwithdzyaloshinskiimoriyainteraction |
| bdutipo_str |
Repositorios |
| _version_ |
1764820451557638144 |