Optimal frame designs for multitasking devices with weight restrictions

Let d=(dj)j∈Im∈Nm be a finite sequence (of dimensions) and α=(αi)i∈In be a sequence of positive numbers (of weights), where Ik={1,…,k} for k∈N. We introduce the (α, d)-designs, i.e., m-tuples Φ=(Fj)j∈Im such that Fj={fij}i∈In is a finite sequence in Cdj, j∈Im, and such that the sequence of non-negat...

Descripción completa

Detalles Bibliográficos
Autores principales: Benac, María José, Massey, Pedro Gustavo, Ruiz, Mariano Andrés, Stojanoff, Demetrio
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/125342
Aporte de:
id I19-R120-10915-125342
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Matemática
Frames
Frame designs
Convex potentials
Majorization
spellingShingle Matemática
Frames
Frame designs
Convex potentials
Majorization
Benac, María José
Massey, Pedro Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
Optimal frame designs for multitasking devices with weight restrictions
topic_facet Matemática
Frames
Frame designs
Convex potentials
Majorization
description Let d=(dj)j∈Im∈Nm be a finite sequence (of dimensions) and α=(αi)i∈In be a sequence of positive numbers (of weights), where Ik={1,…,k} for k∈N. We introduce the (α, d)-designs, i.e., m-tuples Φ=(Fj)j∈Im such that Fj={fij}i∈In is a finite sequence in Cdj, j∈Im, and such that the sequence of non-negative numbers (∥fij∥2)j∈Im forms a partition of αi, i∈In. We characterize the existence of (α, d)-designs with prescribed properties in terms of majorization relations. We show, by means of a finite step algorithm, that there exist (α, d)-designs Φop=(Fopj)j∈Im that are universally optimal; that is, for every convex function φ:[0,∞)→[0,∞), then Φop minimizes the joint convex potential induced by φ among (α, d)-designs, namely $ \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}^{\text {op}})\leq \sum \limits_{j\in \mathbb I_{m}}\text {P}_{\varphi }(\mathcal F_{j}) $ for every (α, d)-design Φ=(Fj)j∈Im, where Pφ(F)=tr(φ(SF)); in particular, Φop minimizes both the joint frame potential and the joint mean square error among (α, d)-designs. We show that in this case, Fopj is a frame for Cdj, for j∈Im. This corresponds to the existence of optimal encoding-decoding schemes for multitasking devices with energy restrictions.
format Articulo
Preprint
author Benac, María José
Massey, Pedro Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_facet Benac, María José
Massey, Pedro Gustavo
Ruiz, Mariano Andrés
Stojanoff, Demetrio
author_sort Benac, María José
title Optimal frame designs for multitasking devices with weight restrictions
title_short Optimal frame designs for multitasking devices with weight restrictions
title_full Optimal frame designs for multitasking devices with weight restrictions
title_fullStr Optimal frame designs for multitasking devices with weight restrictions
title_full_unstemmed Optimal frame designs for multitasking devices with weight restrictions
title_sort optimal frame designs for multitasking devices with weight restrictions
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/125342
work_keys_str_mv AT benacmariajose optimalframedesignsformultitaskingdeviceswithweightrestrictions
AT masseypedrogustavo optimalframedesignsformultitaskingdeviceswithweightrestrictions
AT ruizmarianoandres optimalframedesignsformultitaskingdeviceswithweightrestrictions
AT stojanoffdemetrio optimalframedesignsformultitaskingdeviceswithweightrestrictions
bdutipo_str Repositorios
_version_ 1764820451535618048