Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México
Se diseño un modelo de red neuronal artificial para la predicción al día siguiente del máximo diario de PM10, (material particulado de menos de 10 micrometros de diámetro), el cual se construye de manera dinámica mediante la formación de clusters para la clasificación de patrones y evoluciona a trav...
Guardado en:
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Español |
| Publicado: |
2011
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/125255 |
| Aporte de: |
| id |
I19-R120-10915-125255 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Español |
| topic |
Ciencias Informáticas Redes Neuronales Artificiales Predicción de la contaminación del aire Material Particulado |
| spellingShingle |
Ciencias Informáticas Redes Neuronales Artificiales Predicción de la contaminación del aire Material Particulado Carrera-Velueta, Jesús Magaña-Villegas, Elizabeth Gónzalez-Figueredo, Carlos Hernández-Barajas, José Ramos-Herrera, Sergio Bautista-Margulis, Raúl Laines-Canepa, José Valdez-Manzanilla, Arturo Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| topic_facet |
Ciencias Informáticas Redes Neuronales Artificiales Predicción de la contaminación del aire Material Particulado |
| description |
Se diseño un modelo de red neuronal artificial para la predicción al día siguiente del máximo diario de PM10, (material particulado de menos de 10 micrometros de diámetro), el cual se construye de manera dinámica mediante la formación de clusters para la clasificación de patrones y evoluciona a través de los datos que recibe automáticamente y en tiempo real. Se generó una matriz de distancias a partir de los patrones de entrada para seleccionar el radio óptimo de clasificación. El modelo fue validado mediante la aplicación de datos históricos de variables meteorológicas y de PM10 registrados en Villahermosa, Tabasco, México de 2007 a 2009. Los experimentos realizados permitieron identificar las variables relevantes del modelo y se contemplaron datos normalizados y no-normalizados. Los mejores resultados del modelo se obtuvieron usando promedios móviles y valores máximos y mínimos de PM10 no normalizados como variables de entrada así como radios cercanos al valor mínimo calculado en la matriz de distancias. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Carrera-Velueta, Jesús Magaña-Villegas, Elizabeth Gónzalez-Figueredo, Carlos Hernández-Barajas, José Ramos-Herrera, Sergio Bautista-Margulis, Raúl Laines-Canepa, José Valdez-Manzanilla, Arturo |
| author_facet |
Carrera-Velueta, Jesús Magaña-Villegas, Elizabeth Gónzalez-Figueredo, Carlos Hernández-Barajas, José Ramos-Herrera, Sergio Bautista-Margulis, Raúl Laines-Canepa, José Valdez-Manzanilla, Arturo |
| author_sort |
Carrera-Velueta, Jesús |
| title |
Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| title_short |
Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| title_full |
Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| title_fullStr |
Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| title_full_unstemmed |
Red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a PM10 en Villahermosa Tabasco, México |
| title_sort |
red neuronal auto-organizada con aprendizaje en tiempo real para la predicción de la calidad del aire en base a pm10 en villahermosa tabasco, méxico |
| publishDate |
2011 |
| url |
http://sedici.unlp.edu.ar/handle/10915/125255 |
| work_keys_str_mv |
AT carreraveluetajesus redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT maganavillegaselizabeth redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT gonzalezfigueredocarlos redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT hernandezbarajasjose redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT ramosherrerasergio redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT bautistamargulisraul redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT lainescanepajose redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico AT valdezmanzanillaarturo redneuronalautoorganizadaconaprendizajeentiemporealparalapredicciondelacalidaddelaireenbaseapm10envillahermosatabascomexico |
| bdutipo_str |
Repositorios |
| _version_ |
1764820451458023427 |