Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning
We apply unsupervised learning techniques to classify the different phases of the J₁-J₂ antiferromagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system using convolutional autoencoders. These neural networks can detect phase transitions in the system via "an...
Autores principales: | , , |
---|---|
Formato: | Articulo Preprint |
Lenguaje: | Inglés |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/125201 |
Aporte de: |
id |
I19-R120-10915-125201 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Física Autoencoder Physics Statistical physics Phase transition Degeneracy (mathematics) Lattice (group) Artificial neural network Ising model Unsupervised learning Phase diagram |
spellingShingle |
Física Autoencoder Physics Statistical physics Phase transition Degeneracy (mathematics) Lattice (group) Artificial neural network Ising model Unsupervised learning Phase diagram Acevedo, Santiago Daniel Arlego, Marcelo José Fabián Lamas, Carlos Alberto Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
topic_facet |
Física Autoencoder Physics Statistical physics Phase transition Degeneracy (mathematics) Lattice (group) Artificial neural network Ising model Unsupervised learning Phase diagram |
description |
We apply unsupervised learning techniques to classify the different phases of the J₁-J₂ antiferromagnetic Ising model on the honeycomb lattice. We construct the phase diagram of the system using convolutional autoencoders. These neural networks can detect phase transitions in the system via "anomaly detection'' without the need for any label or a priori knowledge of the phases. We present different ways of training these autoencoders, and we evaluate them to discriminate between distinct magnetic phases. In this process, we highlight the case of high-temperature or even random training data. Finally, we analyze the capability of the autoencoder to detect the ground state degeneracy through the reconstruction error. |
format |
Articulo Preprint |
author |
Acevedo, Santiago Daniel Arlego, Marcelo José Fabián Lamas, Carlos Alberto |
author_facet |
Acevedo, Santiago Daniel Arlego, Marcelo José Fabián Lamas, Carlos Alberto |
author_sort |
Acevedo, Santiago Daniel |
title |
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
title_short |
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
title_full |
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
title_fullStr |
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
title_full_unstemmed |
Phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
title_sort |
phase diagram study of a two-dimensional frustrated antiferromagnet via unsupervised machine learning |
publishDate |
2021 |
url |
http://sedici.unlp.edu.ar/handle/10915/125201 |
work_keys_str_mv |
AT acevedosantiagodaniel phasediagramstudyofatwodimensionalfrustratedantiferromagnetviaunsupervisedmachinelearning AT arlegomarcelojosefabian phasediagramstudyofatwodimensionalfrustratedantiferromagnetviaunsupervisedmachinelearning AT lamascarlosalberto phasediagramstudyofatwodimensionalfrustratedantiferromagnetviaunsupervisedmachinelearning |
bdutipo_str |
Repositorios |
_version_ |
1764820451372040193 |