Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics

In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both di...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Olivares, Felipe, Zunino, Luciano José, Soriano, Miguel C., Pérez, Darío G.
Formato: Articulo
Lenguaje:Inglés
Publicado: 2019
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/124294
Aporte de:
id I19-R120-10915-124294
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
spellingShingle Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
Olivares, Felipe
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
topic_facet Ingeniería
Física
chaotic dynamics
time series length
unobserved ordinal patterns
noise
description In this paper, we introduce a model to describe the decay of the number of unobserved ordinal patterns as a function of the time series length in noisy chaotic dynamics. More precisely, we show that a stretched exponential model fits the decay of the number of unobserved ordinal patterns for both discrete and continuous chaotic systems contaminated with observational noise, independently of the noise level and the sampling time. Numerical simulations, obtained from the logistic map and the x coordinate of the Lorenz system, both operating in a totally chaotic dynamics were used as test beds. In addition, we contrast our results with those obtained from pure stochastic dynamics. The fitting parameters, namely, the stretching exponent and the characteristic decay rate, are used to distinguish whether the dynamical nature of the data sequence is stochastic or chaotic. Finally, the analysis of experimental records associated with the hyperchaotic pulsations of an optoelectronic oscillator allows us to illustrate the applicability of the proposed approach in a practical context.
format Articulo
Articulo
author Olivares, Felipe
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
author_facet Olivares, Felipe
Zunino, Luciano José
Soriano, Miguel C.
Pérez, Darío G.
author_sort Olivares, Felipe
title Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_short Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_fullStr Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_full_unstemmed Unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
title_sort unraveling the decay of the number of unobserved ordinal patterns in noisy chaotic dynamics
publishDate 2019
url http://sedici.unlp.edu.ar/handle/10915/124294
work_keys_str_mv AT olivaresfelipe unravelingthedecayofthenumberofunobservedordinalpatternsinnoisychaoticdynamics
AT zuninolucianojose unravelingthedecayofthenumberofunobservedordinalpatternsinnoisychaoticdynamics
AT sorianomiguelc unravelingthedecayofthenumberofunobservedordinalpatternsinnoisychaoticdynamics
AT perezdariog unravelingthedecayofthenumberofunobservedordinalpatternsinnoisychaoticdynamics
bdutipo_str Repositorios
_version_ 1764820450045591552