Nonlinear slight parameter changes detection : A forecasting approach

In many biological systems it is crucial to detect changes, as accurate as possible, in the parameters that govern their dynamics. In this work we propose a new method to perform an online automatic detection of such changes, making use of a well known nonlinear fore- casting algorithm. The approach...

Descripción completa

Detalles Bibliográficos
Autores principales: Sulam, Jeremias, Schlotthauer, Gastón, Torres, María E.
Formato: Objeto de conferencia
Lenguaje:Inglés
Publicado: 2012
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123918
https://41jaiio.sadio.org.ar/sites/default/files/15_AST_2012.pdf
Aporte de:
id I19-R120-10915-123918
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Informáticas
Nonlinear event detection
Nonlinear forecasting
Prediction error
spellingShingle Ciencias Informáticas
Nonlinear event detection
Nonlinear forecasting
Prediction error
Sulam, Jeremias
Schlotthauer, Gastón
Torres, María E.
Nonlinear slight parameter changes detection : A forecasting approach
topic_facet Ciencias Informáticas
Nonlinear event detection
Nonlinear forecasting
Prediction error
description In many biological systems it is crucial to detect changes, as accurate as possible, in the parameters that govern their dynamics. In this work we propose a new method to perform an online automatic detection of such changes, making use of a well known nonlinear fore- casting algorithm. The approach takes advantage of the characterization of an interval of a signal by the reconstruction of its phase space through time-delay embedding. To this end, the optimal delay and embedding dimension are estimated, and a method is proposed for determining the forecasting parameters, after which it is possible to predict future values of the studied signal. In this novel approach the method is used as a way of detecting changes in the dynamics of a system, given that the forecast is performed using a template of the signal where its parameters remain constant. At this point, the measure of the prediction error is used to detect a change in the dynamics of the system. We also propose a second estimator of this change, namely prediction failure, which is a stronger binary estimator of change in the dynamics. The results are analyzed by a cumulative sum algorithm (CUSUM ) to obtain a detection point. In order to test their behavior, both methods are applied to deterministic discrete and continuos synthesized data, and to a simulated biological model.
format Objeto de conferencia
Objeto de conferencia
author Sulam, Jeremias
Schlotthauer, Gastón
Torres, María E.
author_facet Sulam, Jeremias
Schlotthauer, Gastón
Torres, María E.
author_sort Sulam, Jeremias
title Nonlinear slight parameter changes detection : A forecasting approach
title_short Nonlinear slight parameter changes detection : A forecasting approach
title_full Nonlinear slight parameter changes detection : A forecasting approach
title_fullStr Nonlinear slight parameter changes detection : A forecasting approach
title_full_unstemmed Nonlinear slight parameter changes detection : A forecasting approach
title_sort nonlinear slight parameter changes detection : a forecasting approach
publishDate 2012
url http://sedici.unlp.edu.ar/handle/10915/123918
https://41jaiio.sadio.org.ar/sites/default/files/15_AST_2012.pdf
work_keys_str_mv AT sulamjeremias nonlinearslightparameterchangesdetectionaforecastingapproach
AT schlotthauergaston nonlinearslightparameterchangesdetectionaforecastingapproach
AT torresmariae nonlinearslightparameterchangesdetectionaforecastingapproach
bdutipo_str Repositorios
_version_ 1764820450523742210