Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions
In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and f...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2015
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123907 |
| Aporte de: |
| id |
I19-R120-10915-123907 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA |
| spellingShingle |
Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA Gluzmann, Pablo Alfredo Panigo, Demian Tupac Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| topic_facet |
Ciencias Económicas st0383 gsreg Automatic model selection vselect PcGets RETINA |
| description |
In this article, we present gsreg, a new automatic model-selection technique for cross-section, time-series, and panel-data regressions. Like other exhaustive search algorithms (for example, vselect), gsreg avoids characteristic path-dependence traps of standard approaches as well as backward- and forwardlooking approaches (like PcGets or relevant transformation of the inputs network approach). However, gsreg is the first code that 1) guarantees optimality with out-of-sample selection criteria; 2) allows residual testing for each alternative; and 3) provides (depending on user specifications) a full-information dataset with outcome statistics for every alternative model. |
| format |
Articulo Articulo |
| author |
Gluzmann, Pablo Alfredo Panigo, Demian Tupac |
| author_facet |
Gluzmann, Pablo Alfredo Panigo, Demian Tupac |
| author_sort |
Gluzmann, Pablo Alfredo |
| title |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_short |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_full |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_fullStr |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_full_unstemmed |
Global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| title_sort |
global search regression: a new automatic model-selection technique for cross-section, time-series, and panel-data regressions |
| publishDate |
2015 |
| url |
http://sedici.unlp.edu.ar/handle/10915/123907 |
| work_keys_str_mv |
AT gluzmannpabloalfredo globalsearchregressionanewautomaticmodelselectiontechniqueforcrosssectiontimeseriesandpaneldataregressions AT panigodemiantupac globalsearchregressionanewautomaticmodelselectiontechniqueforcrosssectiontimeseriesandpaneldataregressions |
| bdutipo_str |
Repositorios |
| _version_ |
1764820450516402176 |