Dirac fields in the background of a magnetic flux string and spectral boundary conditions

We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Beneventano, Carlota Gabriela, De Francia, María Fernanda, Santángelo, Eve Mariel
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 1999
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123621
Aporte de:
Descripción
Sumario:We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radial Hamiltonian and the invariance under integer translations of the reduced flux. After confining the theory to a finite region, we check the consistency with the index theorem, and evaluate its vacuum fermionic number and Casimir energy.