Dirac fields in the background of a magnetic flux string and spectral boundary conditions

We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radi...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Beneventano, Carlota Gabriela, De Francia, María Fernanda, Santángelo, Eve Mariel
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 1999
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123621
Aporte de:
id I19-R120-10915-123621
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Casimir effect
Physics
Eigenfunction
Aharonov–Bohm effect
Magnetic flux
Hamiltonian (quantum mechanics)
Boundary value problem
Atiyah–Singer index theorem
Zero mode
Quantum electrodynamics
spellingShingle Física
Casimir effect
Physics
Eigenfunction
Aharonov–Bohm effect
Magnetic flux
Hamiltonian (quantum mechanics)
Boundary value problem
Atiyah–Singer index theorem
Zero mode
Quantum electrodynamics
Beneventano, Carlota Gabriela
De Francia, María Fernanda
Santángelo, Eve Mariel
Dirac fields in the background of a magnetic flux string and spectral boundary conditions
topic_facet Física
Casimir effect
Physics
Eigenfunction
Aharonov–Bohm effect
Magnetic flux
Hamiltonian (quantum mechanics)
Boundary value problem
Atiyah–Singer index theorem
Zero mode
Quantum electrodynamics
description We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radial Hamiltonian and the invariance under integer translations of the reduced flux. After confining the theory to a finite region, we check the consistency with the index theorem, and evaluate its vacuum fermionic number and Casimir energy.
format Articulo
Preprint
author Beneventano, Carlota Gabriela
De Francia, María Fernanda
Santángelo, Eve Mariel
author_facet Beneventano, Carlota Gabriela
De Francia, María Fernanda
Santángelo, Eve Mariel
author_sort Beneventano, Carlota Gabriela
title Dirac fields in the background of a magnetic flux string and spectral boundary conditions
title_short Dirac fields in the background of a magnetic flux string and spectral boundary conditions
title_full Dirac fields in the background of a magnetic flux string and spectral boundary conditions
title_fullStr Dirac fields in the background of a magnetic flux string and spectral boundary conditions
title_full_unstemmed Dirac fields in the background of a magnetic flux string and spectral boundary conditions
title_sort dirac fields in the background of a magnetic flux string and spectral boundary conditions
publishDate 1999
url http://sedici.unlp.edu.ar/handle/10915/123621
work_keys_str_mv AT beneventanocarlotagabriela diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions
AT defranciamariafernanda diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions
AT santangeloevemariel diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions
bdutipo_str Repositorios
_version_ 1764820449876770819