Dirac fields in the background of a magnetic flux string and spectral boundary conditions
We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radi...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
1999
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123621 |
| Aporte de: |
| id |
I19-R120-10915-123621 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Casimir effect Physics Eigenfunction Aharonov–Bohm effect Magnetic flux Hamiltonian (quantum mechanics) Boundary value problem Atiyah–Singer index theorem Zero mode Quantum electrodynamics |
| spellingShingle |
Física Casimir effect Physics Eigenfunction Aharonov–Bohm effect Magnetic flux Hamiltonian (quantum mechanics) Boundary value problem Atiyah–Singer index theorem Zero mode Quantum electrodynamics Beneventano, Carlota Gabriela De Francia, María Fernanda Santángelo, Eve Mariel Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| topic_facet |
Física Casimir effect Physics Eigenfunction Aharonov–Bohm effect Magnetic flux Hamiltonian (quantum mechanics) Boundary value problem Atiyah–Singer index theorem Zero mode Quantum electrodynamics |
| description |
We study the problem of a Dirac field in the background of an Aharonov–Bohm flux string. We exclude the origin by imposing spectral boundary conditions at a finite radius then shrinked to zero. Thus, we obtain a behavior of the eigenfunctions which is compatible with the self-adjointness of the radial Hamiltonian and the invariance under integer translations of the reduced flux. After confining the theory to a finite region, we check the consistency with the index theorem, and evaluate its vacuum fermionic number and Casimir energy. |
| format |
Articulo Preprint |
| author |
Beneventano, Carlota Gabriela De Francia, María Fernanda Santángelo, Eve Mariel |
| author_facet |
Beneventano, Carlota Gabriela De Francia, María Fernanda Santángelo, Eve Mariel |
| author_sort |
Beneventano, Carlota Gabriela |
| title |
Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| title_short |
Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| title_full |
Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| title_fullStr |
Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| title_full_unstemmed |
Dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| title_sort |
dirac fields in the background of a magnetic flux string and spectral boundary conditions |
| publishDate |
1999 |
| url |
http://sedici.unlp.edu.ar/handle/10915/123621 |
| work_keys_str_mv |
AT beneventanocarlotagabriela diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions AT defranciamariafernanda diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions AT santangeloevemariel diracfieldsinthebackgroundofamagneticfluxstringandspectralboundaryconditions |
| bdutipo_str |
Repositorios |
| _version_ |
1764820449876770819 |