On the Path Integral Representation for Spin Systems

We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cabra, Daniel Carlos, Dobry, Ariel, Greco, Andrés, Rossini, Gerardo Luis
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 1997
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123178
Aporte de:
Descripción
Sumario:We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, obtained via the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent states. We also evaluate this partition function for the case of a single spin in a magnetic field.