On the Path Integral Representation for Spin Systems
We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, o...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo Preprint |
| Lenguaje: | Inglés |
| Publicado: |
1997
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/123178 |
| Aporte de: |
| id |
I19-R120-10915-123178 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Física Magnetic field Class (set theory) Coherent states Path integral formulation Dirac (software) Partition function (quantum field theory) Mathematics Mathematical physics Representation (mathematics) Quantum mechanics Spin-½ Physics |
| spellingShingle |
Física Magnetic field Class (set theory) Coherent states Path integral formulation Dirac (software) Partition function (quantum field theory) Mathematics Mathematical physics Representation (mathematics) Quantum mechanics Spin-½ Physics Cabra, Daniel Carlos Dobry, Ariel Greco, Andrés Rossini, Gerardo Luis On the Path Integral Representation for Spin Systems |
| topic_facet |
Física Magnetic field Class (set theory) Coherent states Path integral formulation Dirac (software) Partition function (quantum field theory) Mathematics Mathematical physics Representation (mathematics) Quantum mechanics Spin-½ Physics |
| description |
We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, obtained via the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent states. We also evaluate this partition function for the case of a single spin in a magnetic field. |
| format |
Articulo Preprint |
| author |
Cabra, Daniel Carlos Dobry, Ariel Greco, Andrés Rossini, Gerardo Luis |
| author_facet |
Cabra, Daniel Carlos Dobry, Ariel Greco, Andrés Rossini, Gerardo Luis |
| author_sort |
Cabra, Daniel Carlos |
| title |
On the Path Integral Representation for Spin Systems |
| title_short |
On the Path Integral Representation for Spin Systems |
| title_full |
On the Path Integral Representation for Spin Systems |
| title_fullStr |
On the Path Integral Representation for Spin Systems |
| title_full_unstemmed |
On the Path Integral Representation for Spin Systems |
| title_sort |
on the path integral representation for spin systems |
| publishDate |
1997 |
| url |
http://sedici.unlp.edu.ar/handle/10915/123178 |
| work_keys_str_mv |
AT cabradanielcarlos onthepathintegralrepresentationforspinsystems AT dobryariel onthepathintegralrepresentationforspinsystems AT grecoandres onthepathintegralrepresentationforspinsystems AT rossinigerardoluis onthepathintegralrepresentationforspinsystems |
| bdutipo_str |
Repositorios |
| _version_ |
1764820449918713856 |