On the Path Integral Representation for Spin Systems

We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cabra, Daniel Carlos, Dobry, Ariel, Greco, Andrés, Rossini, Gerardo Luis
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 1997
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/123178
Aporte de:
id I19-R120-10915-123178
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Magnetic field
Class (set theory)
Coherent states
Path integral formulation
Dirac (software)
Partition function (quantum field theory)
Mathematics
Mathematical physics
Representation (mathematics)
Quantum mechanics
Spin-½
Physics
spellingShingle Física
Magnetic field
Class (set theory)
Coherent states
Path integral formulation
Dirac (software)
Partition function (quantum field theory)
Mathematics
Mathematical physics
Representation (mathematics)
Quantum mechanics
Spin-½
Physics
Cabra, Daniel Carlos
Dobry, Ariel
Greco, Andrés
Rossini, Gerardo Luis
On the Path Integral Representation for Spin Systems
topic_facet Física
Magnetic field
Class (set theory)
Coherent states
Path integral formulation
Dirac (software)
Partition function (quantum field theory)
Mathematics
Mathematical physics
Representation (mathematics)
Quantum mechanics
Spin-½
Physics
description We propose a classical constrained Hamiltonian theory for the spin. After the Dirac treatment we show that due to the existence of second class constraints the Dirac brackets of the proposed theory represent the commutation relations for the spin. We show that the corresponding partition function, obtained via the Fadeev-Senjanovic procedure, coincides with the one obtained using coherent states. We also evaluate this partition function for the case of a single spin in a magnetic field.
format Articulo
Preprint
author Cabra, Daniel Carlos
Dobry, Ariel
Greco, Andrés
Rossini, Gerardo Luis
author_facet Cabra, Daniel Carlos
Dobry, Ariel
Greco, Andrés
Rossini, Gerardo Luis
author_sort Cabra, Daniel Carlos
title On the Path Integral Representation for Spin Systems
title_short On the Path Integral Representation for Spin Systems
title_full On the Path Integral Representation for Spin Systems
title_fullStr On the Path Integral Representation for Spin Systems
title_full_unstemmed On the Path Integral Representation for Spin Systems
title_sort on the path integral representation for spin systems
publishDate 1997
url http://sedici.unlp.edu.ar/handle/10915/123178
work_keys_str_mv AT cabradanielcarlos onthepathintegralrepresentationforspinsystems
AT dobryariel onthepathintegralrepresentationforspinsystems
AT grecoandres onthepathintegralrepresentationforspinsystems
AT rossinigerardoluis onthepathintegralrepresentationforspinsystems
bdutipo_str Repositorios
_version_ 1764820449918713856