Stochastic Quantization of the Chern-Simons Theory

We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Cugliandolo, Leticia F., Rossini, Gerardo Luis, Schaposnik, Fidel Arturo
Formato: Articulo
Lenguaje:Inglés
Publicado: 1992
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/122930
Aporte de:
Descripción
Sumario:We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.