Stochastic Quantization of the Chern-Simons Theory

We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3...

Descripción completa

Detalles Bibliográficos
Autores principales: Cugliandolo, Leticia F., Rossini, Gerardo Luis, Schaposnik, Fidel Arturo
Formato: Articulo
Lenguaje:Inglés
Publicado: 1992
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/122930
Aporte de:
id I19-R120-10915-122930
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
spellingShingle Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
Cugliandolo, Leticia F.
Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
Stochastic Quantization of the Chern-Simons Theory
topic_facet Ciencias Exactas
Física
Propagator
Chern–Simons theory
Regularization (physics)
Langevin equation
Stochastic quantization
Topological invariants
Mathematical physics
Quantum field theory
Partition function (mathematics)
description We discuss Stochastic Quantization of d=3 dimensional non-Abelian Chern-Simons theory. We demonstrate that the introduction of an appropriate regulator in the Langevin equation yields a well-defined equilibrium limit, thus leading to the correct propagator. We also analyze the connection between d=3 Chern-Simons and d=4 Topological Yang-Mills theories showing the equivalence between the corresponding regularized partition functions. We study the construction of topological invariants and the introduction of a non-trivial kernel as an alternative regularization.
format Articulo
Articulo
author Cugliandolo, Leticia F.
Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
author_facet Cugliandolo, Leticia F.
Rossini, Gerardo Luis
Schaposnik, Fidel Arturo
author_sort Cugliandolo, Leticia F.
title Stochastic Quantization of the Chern-Simons Theory
title_short Stochastic Quantization of the Chern-Simons Theory
title_full Stochastic Quantization of the Chern-Simons Theory
title_fullStr Stochastic Quantization of the Chern-Simons Theory
title_full_unstemmed Stochastic Quantization of the Chern-Simons Theory
title_sort stochastic quantization of the chern-simons theory
publishDate 1992
url http://sedici.unlp.edu.ar/handle/10915/122930
work_keys_str_mv AT cugliandololeticiaf stochasticquantizationofthechernsimonstheory
AT rossinigerardoluis stochasticquantizationofthechernsimonstheory
AT schaposnikfidelarturo stochasticquantizationofthechernsimonstheory
bdutipo_str Repositorios
_version_ 1764820449489846273