Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process

Bee-pollen is a functional food sold for human and animal consumption but also is a favorable microhabitat for many spore-forming bacteria. Among them, Bacillus cereus can produce several toxins and other virulence factors, causing an emetic or diarrheal syndrome after ingestion. The study involved...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: López, Ana Clara, Fernández, Leticia, Alippi, Adriana Mónica
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/120285
Aporte de:
id I19-R120-10915-120285
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ciencias Agrarias
Rep-PCR
Virulence genes
Beekeeping
Microbiological quality
Virulence patterns
spellingShingle Ciencias Agrarias
Rep-PCR
Virulence genes
Beekeeping
Microbiological quality
Virulence patterns
López, Ana Clara
Fernández, Leticia
Alippi, Adriana Mónica
Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
topic_facet Ciencias Agrarias
Rep-PCR
Virulence genes
Beekeeping
Microbiological quality
Virulence patterns
description Bee-pollen is a functional food sold for human and animal consumption but also is a favorable microhabitat for many spore-forming bacteria. Among them, Bacillus cereus can produce several toxins and other virulence factors, causing an emetic or diarrheal syndrome after ingestion. The study involved 36 bee-pollen samples obtained from different sampling points throughout the production process (collecting, freezing, drying, and cleaning) in Argentina. Fifty isolates of B. cereus yielded 24 different fingerprint patterns with BOX and ERIC primers. Only three fingerprint patterns were maintained throughout the production process. In contrast, others were lost or incorporated during the different steps, suggesting that cross-contamination occurred as shown by differences in fingerprint patterns after freezing, drying, and cleaning steps compared to the initial collection step. Genes encoding for cereulide (ces), cytotoxin K (cytK), sphingomyelinase (sph), the components of hemolysin BL (hblA, hblB, hblC, hblD) and non-hemolytic complex (nheAB) were studied. All the isolates displayed one or more enterotoxin genes. The most frequent virulence genes detected belong to the HBL complex, being the most abundant hblA (98%), followed by hblD (64%), hblB (54%), and hblC (32%), respectively. Ten strains (20%), present at all sampling points, carried all the subunits of the HBL complex. The non-hemolytic enterotoxic complex (nheAB) was found in 48 strains (96%), while seven strains (14%) present at all sampling points showed the amplification product for sphingomyelinase (sph). One cereulide-producer was isolated at the cleaning step; this strain contained all the components for the hemolytic enterotoxin complex HBL, the NHE complex, and cytotoxin K related to the foodborne diarrhoeal syndrome. In total, 11 different virulence patterns were observed, and also a correlation between rep-fingerprint and virulence patterns. The results suggest that bee-pollen can be contaminated at any point in the production process with potential enterotoxic B. cereus strains, emphasizing the importance of hygienic processing.
format Articulo
Articulo
author López, Ana Clara
Fernández, Leticia
Alippi, Adriana Mónica
author_facet López, Ana Clara
Fernández, Leticia
Alippi, Adriana Mónica
author_sort López, Ana Clara
title Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
title_short Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
title_full Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
title_fullStr Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
title_full_unstemmed Traceability of potential enterotoxigenic <i>Bacillus cereus</i> in bee-pollen samples from Argentina throughout the production process
title_sort traceability of potential enterotoxigenic <i>bacillus cereus</i> in bee-pollen samples from argentina throughout the production process
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/120285
work_keys_str_mv AT lopezanaclara traceabilityofpotentialenterotoxigenicibacilluscereusiinbeepollensamplesfromargentinathroughouttheproductionprocess
AT fernandezleticia traceabilityofpotentialenterotoxigenicibacilluscereusiinbeepollensamplesfromargentinathroughouttheproductionprocess
AT alippiadrianamonica traceabilityofpotentialenterotoxigenicibacilluscereusiinbeepollensamplesfromargentinathroughouttheproductionprocess
bdutipo_str Repositorios
_version_ 1764820449654472705