Machine-learning-assisted insight into spin ice Dy2Ti2O7
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Articulo |
Lenguaje: | Inglés |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/119733 |
Aporte de: |
id |
I19-R120-10915-119733 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de La Plata |
institution_str |
I-19 |
repository_str |
R-120 |
collection |
SEDICI (UNLP) |
language |
Inglés |
topic |
Física Model Hamiltonians Autoencoder |
spellingShingle |
Física Model Hamiltonians Autoencoder Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
topic_facet |
Física Model Hamiltonians Autoencoder |
description |
Complex behavior poses challenges in extracting models from experiment. An example is spin liquid formation in frustrated magnets like Dy2Ti2O7. Understanding has been hindered by issues including disorder, glass formation, and interpretation of scattering data. Here, we use an automated capability to extract model Hamiltonians from data, and to identify different magnetic regimes. This involves training an autoencoder to learn a compressed representation of three-dimensional diffuse scattering, over a wide range of spin Hamiltonians.
The autoencoder finds optimal matches according to scattering and heat capacity data and provides confidence intervals. Validation tests indicate that our optimal Hamiltonian accurately predicts temperature and field dependence of both magnetic structure and magnetization, as well as glass formation and irreversibility in Dy2Ti2O7. The autoencoder can also categorize different magnetic behaviors and eliminate background noise and artifacts in raw data. Our methodology is readily applicable to other materials and types of scattering problems. |
format |
Articulo Articulo |
author |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author_facet |
Samarakoon, Anjana M. Barros, Kipton Li, Ying Wai Eisenbach, Markus Zhang, Qiang Ye, Feng Sharma, V. Dun, Z. L. Zhou, Haidong Grigera, Santiago Andrés Batista, Cristian D. Tennant, D. Alan |
author_sort |
Samarakoon, Anjana M. |
title |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_short |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_fullStr |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_full_unstemmed |
Machine-learning-assisted insight into spin ice Dy2Ti2O7 |
title_sort |
machine-learning-assisted insight into spin ice dy2ti2o7 |
publishDate |
2020 |
url |
http://sedici.unlp.edu.ar/handle/10915/119733 |
work_keys_str_mv |
AT samarakoonanjanam machinelearningassistedinsightintospinicedy2ti2o7 AT barroskipton machinelearningassistedinsightintospinicedy2ti2o7 AT liyingwai machinelearningassistedinsightintospinicedy2ti2o7 AT eisenbachmarkus machinelearningassistedinsightintospinicedy2ti2o7 AT zhangqiang machinelearningassistedinsightintospinicedy2ti2o7 AT yefeng machinelearningassistedinsightintospinicedy2ti2o7 AT sharmav machinelearningassistedinsightintospinicedy2ti2o7 AT dunzl machinelearningassistedinsightintospinicedy2ti2o7 AT zhouhaidong machinelearningassistedinsightintospinicedy2ti2o7 AT grigerasantiagoandres machinelearningassistedinsightintospinicedy2ti2o7 AT batistacristiand machinelearningassistedinsightintospinicedy2ti2o7 AT tennantdalan machinelearningassistedinsightintospinicedy2ti2o7 |
bdutipo_str |
Repositorios |
_version_ |
1764820447665324037 |