How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence

We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize tha...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Plastino, Ángel Luis, Rocca, Mario Carlos
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/119306
Aporte de:
id I19-R120-10915-119306
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
spellingShingle Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
Plastino, Ángel Luis
Rocca, Mario Carlos
How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
topic_facet Física
ADS/CFT correspondence
Boundary-bulk propagators
Feynman’s propagators
Wheeler’s propagators
description We discuss, giving all necessary details, the boundary-bulk propagators. We do it for a scalar field, with and without mass, for both the Feynman and the Wheeler cases. Contrary to standard procedure, we do not need here to appeal to any unfounded conjecture (as done by other authors). Emphasize that we do not try to modify standard ADS/CFT procedures, but use them to evaluate the corresponding Feynman and Wheeler propagators. Our present calculations are original in the sense of being the first ones undertaken explicitly using distributions theory (DT). They are carried out in two instances: 1) when the boundary is a Euclidean space and 2) when it is of Minkowskian nature. In this last case we compute also three propagators: Feynman’s, Anti- Feynman’s, and Wheeler’s (half advanced plus half retarded). For an operator corresponding to a scalar field we explicitly obtain, for the first time ever, the two points’ correlations functions in the three instances above mentioned. To repeat, it is not our intention here to improve on ADS/CFT theory but only to employ it for evaluating the corresponding Wheeler’s propagators.
format Articulo
Articulo
author Plastino, Ángel Luis
Rocca, Mario Carlos
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_sort Plastino, Ángel Luis
title How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_short How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_full How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_fullStr How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_full_unstemmed How to Explicitly Calculate Feynman and Wheeler Propagators in the ADS/CFT Correspondence
title_sort how to explicitly calculate feynman and wheeler propagators in the ads/cft correspondence
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/119306
work_keys_str_mv AT plastinoangelluis howtoexplicitlycalculatefeynmanandwheelerpropagatorsintheadscftcorrespondence
AT roccamariocarlos howtoexplicitlycalculatefeynmanandwheelerpropagatorsintheadscftcorrespondence
bdutipo_str Repositorios
_version_ 1764820448171786240