Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity

We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Plastino, Ángel Luis, Rocca, Mario Carlos
Formato: Articulo
Lenguaje:Inglés
Publicado: 2020
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/119283
Aporte de:
id I19-R120-10915-119283
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
spellingShingle Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
Plastino, Ángel Luis
Rocca, Mario Carlos
Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
topic_facet Física
Quantum Field Theory
Einstein Gravity
Non-Renormalizable Theories
Unitarity
description We revisit, advancing a useful approximation, a recently formulated QFT treatment that successfully overcomes any troubles with infinities for non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such methodology was able to successfully deal, in non-relativistic fashion, with Newton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our present approximation to the QFT method of [J. Phys. Comm. 2 115029 (2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1], save for a different constraint’s selection. This choice allows one to avoid the lack of unitarity for the S matrix that impaired the proceedings of Gupta and Feynman. Moreover, we are able to simplify the handling of such constraint by eliminating the need to involve ghosts for guarantying unitarity. Our approximation consists in setting the graviton field φ μν =γ μνφ , where γ μν is a constant tensor and φ a scalar (graviton) field. The ensuing approximate approach is non-renormalizable, an inconvenience that we are able to overcome in [J. Phys. Comm. 2 115029 (2018)].
format Articulo
Articulo
author Plastino, Ángel Luis
Rocca, Mario Carlos
author_facet Plastino, Ángel Luis
Rocca, Mario Carlos
author_sort Plastino, Ángel Luis
title Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_short Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_full Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_fullStr Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_full_unstemmed Approximate Reformulation a Recent Non-Renormalizable QFT’s Methodology and Einstein’s Gravity
title_sort approximate reformulation a recent non-renormalizable qft’s methodology and einstein’s gravity
publishDate 2020
url http://sedici.unlp.edu.ar/handle/10915/119283
work_keys_str_mv AT plastinoangelluis approximatereformulationarecentnonrenormalizableqftsmethodologyandeinsteinsgravity
AT roccamariocarlos approximatereformulationarecentnonrenormalizableqftsmethodologyandeinsteinsgravity
bdutipo_str Repositorios
_version_ 1764820448135086080