Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks
The correction of attenuation effects in Positron Emission Tomography (PET) imaging is fundamental to obtain a correct radiotracer distribution. However direct measurement of this attenuation map is not error-free and normally results in additional ionization radiation dose to the patient. Here, we...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Articulo |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/118045 https://journal.info.unlp.edu.ar/JCST/article/view/1519 |
| Aporte de: |
| id |
I19-R120-10915-118045 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Attenuation Correction Deep Learning Generative Models Positron Emission Tomography Corrección de atenuación Aprendizaje profundo Modelos generativos Tomografía por Emisión de Positrones |
| spellingShingle |
Ciencias Informáticas Attenuation Correction Deep Learning Generative Models Positron Emission Tomography Corrección de atenuación Aprendizaje profundo Modelos generativos Tomografía por Emisión de Positrones Rodríguez Colmeiro, Ramiro Verrastro, Claudio Minsky, Daniel Grosges, Thomas Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| topic_facet |
Ciencias Informáticas Attenuation Correction Deep Learning Generative Models Positron Emission Tomography Corrección de atenuación Aprendizaje profundo Modelos generativos Tomografía por Emisión de Positrones |
| description |
The correction of attenuation effects in Positron Emission Tomography (PET) imaging is fundamental to obtain a correct radiotracer distribution. However direct measurement of this attenuation map is not error-free and normally results in additional ionization radiation dose to the patient. Here, we explore the task of whole body attenuation map generation using 3D deep neural networks. We analyze the advantages that an adversarial training can provide to such models. The networks are trained to learn the mapping from non attenuation corrected [<sup> 18</sup><i>F</i>]-fluorodeoxyglucose PET images to a synthetic Computerized Tomography (sCT) and also to label the input voxel tissue. Then the sCT image is further refined using an adversarial training scheme to recover higher frequency details and lost structures using context information. This work is trained and tested on public available datasets, containing several PET images from different scanners with different radiotracer administration and reconstruction modalities. The network is trained with 108 samples and validated on 10 samples. The sCT generation was tested on 133 samples from 8 distinct datasets. The resulting mean absolute error of the tested networks is 96 ± 20 HU and 103 ± 18 HU with a peak signal to noise ratio of 19.3 ± 1.7 dB and 18.6 ± 1.5 dB, for the base model and adversarial model respectively. The attenuation correction is tested by means of attenuation sinograms, obtaining a line of response attenuation mean error lower than 1% with a standard deviation lower than 8%. The proposed deep learning topologies are capable of generating whole body attenuation maps from uncorrected PET image data. Moreover, the accuracy of both methods holds in the presence of data from multiple sources and modalities and are trained on publicly available datasets. Finally, while the adversarial layer enhances visual appearance of the produced samples, the 3D U-Net achieves higher metric performance. |
| format |
Articulo Articulo |
| author |
Rodríguez Colmeiro, Ramiro Verrastro, Claudio Minsky, Daniel Grosges, Thomas |
| author_facet |
Rodríguez Colmeiro, Ramiro Verrastro, Claudio Minsky, Daniel Grosges, Thomas |
| author_sort |
Rodríguez Colmeiro, Ramiro |
| title |
Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| title_short |
Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| title_full |
Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| title_fullStr |
Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| title_full_unstemmed |
Towards a Whole Body [<sup>18</sup><i>F</i>] FDG Positron Emission Tomography Attenuation Correction Map Synthesizing using Deep Neural Networks |
| title_sort |
towards a whole body [<sup>18</sup><i>f</i>] fdg positron emission tomography attenuation correction map synthesizing using deep neural networks |
| publishDate |
2021 |
| url |
http://sedici.unlp.edu.ar/handle/10915/118045 https://journal.info.unlp.edu.ar/JCST/article/view/1519 |
| work_keys_str_mv |
AT rodriguezcolmeiroramiro towardsawholebodysup18supififdgpositronemissiontomographyattenuationcorrectionmapsynthesizingusingdeepneuralnetworks AT verrastroclaudio towardsawholebodysup18supififdgpositronemissiontomographyattenuationcorrectionmapsynthesizingusingdeepneuralnetworks AT minskydaniel towardsawholebodysup18supififdgpositronemissiontomographyattenuationcorrectionmapsynthesizingusingdeepneuralnetworks AT grosgesthomas towardsawholebodysup18supififdgpositronemissiontomographyattenuationcorrectionmapsynthesizingusingdeepneuralnetworks AT rodriguezcolmeiroramiro hacialasintetizaciondemapasdeatenuaciondecuerpocompletoparatomografiaporemisiondepositronesdesup18supififdgusandoredesneuronalesprofundas AT verrastroclaudio hacialasintetizaciondemapasdeatenuaciondecuerpocompletoparatomografiaporemisiondepositronesdesup18supififdgusandoredesneuronalesprofundas AT minskydaniel hacialasintetizaciondemapasdeatenuaciondecuerpocompletoparatomografiaporemisiondepositronesdesup18supififdgusandoredesneuronalesprofundas AT grosgesthomas hacialasintetizaciondemapasdeatenuaciondecuerpocompletoparatomografiaporemisiondepositronesdesup18supififdgusandoredesneuronalesprofundas |
| bdutipo_str |
Repositorios |
| _version_ |
1764820447346556931 |