Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra
The Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines. However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Objeto de conferencia |
| Lenguaje: | Inglés |
| Publicado: |
2020
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/115420 http://49jaiio.sadio.org.ar/pdfs/cai/CAI_14.pdf |
| Aporte de: |
| id |
I19-R120-10915-115420 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Inglés |
| topic |
Ciencias Informáticas Phenolic components Wine making Statistical learning |
| spellingShingle |
Ciencias Informáticas Phenolic components Wine making Statistical learning Catania, Aníbal Catania, Carlos Sari, Santiago Fanzone, Martín Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| topic_facet |
Ciencias Informáticas Phenolic components Wine making Statistical learning |
| description |
The Harbertson-Adams phenolic parameter assay is a well- known method to measure a panel of phenolic compounds in red wines.
However, the multistep analyses required by the method fail at producing results on multiple parameters rapidly. In the present article, we analyze the bene ts of applying a statistical model based on Principal Component Analysis (PCA) and a statistical learning technique denoted as Support Vector Regression Machines (SVR) for correlating sample spectra data to the Harbertson-Adams assay, on each of the phenolics components. The resulting model showed a high correlation between the measured and predicted values for each of the phenolic parameters despite the multicollinearity and high dimensions of the dataset. |
| format |
Objeto de conferencia Objeto de conferencia |
| author |
Catania, Aníbal Catania, Carlos Sari, Santiago Fanzone, Martín |
| author_facet |
Catania, Aníbal Catania, Carlos Sari, Santiago Fanzone, Martín |
| author_sort |
Catania, Aníbal |
| title |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| title_short |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| title_full |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| title_fullStr |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| title_full_unstemmed |
Predicting Harbertson-Adams Assay Phenolic Parameters In Red Wines Using Visible Spectra |
| title_sort |
predicting harbertson-adams assay phenolic parameters in red wines using visible spectra |
| publishDate |
2020 |
| url |
http://sedici.unlp.edu.ar/handle/10915/115420 http://49jaiio.sadio.org.ar/pdfs/cai/CAI_14.pdf |
| work_keys_str_mv |
AT cataniaanibal predictingharbertsonadamsassayphenolicparametersinredwinesusingvisiblespectra AT cataniacarlos predictingharbertsonadamsassayphenolicparametersinredwinesusingvisiblespectra AT sarisantiago predictingharbertsonadamsassayphenolicparametersinredwinesusingvisiblespectra AT fanzonemartin predictingharbertsonadamsassayphenolicparametersinredwinesusingvisiblespectra |
| bdutipo_str |
Repositorios |
| _version_ |
1764820446863163393 |