Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
We compare two alternative expansions for finite attractive wells. One of them is known from long ago and is given in terms of powers of the strength parameter. The other one is based on the solution of the equations of the Rayleigh–Schrödinger perturbation theory in a basis set of functions of peri...
Guardado en:
| Autores principales: | , |
|---|---|
| Formato: | Articulo Comunicacion |
| Lenguaje: | Español |
| Publicado: |
2017
|
| Materias: | |
| Acceso en línea: | http://sedici.unlp.edu.ar/handle/10915/109384 https://www.sciencedirect.com/science/article/abs/pii/S0003491616302883 |
| Aporte de: |
| id |
I19-R120-10915-109384 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de La Plata |
| institution_str |
I-19 |
| repository_str |
R-120 |
| collection |
SEDICI (UNLP) |
| language |
Español |
| topic |
Ciencias Exactas Química finite attractive well perturbation expansion asymptotic expansion periodic boundary conditions square potential Dirac delta potential |
| spellingShingle |
Ciencias Exactas Química finite attractive well perturbation expansion asymptotic expansion periodic boundary conditions square potential Dirac delta potential Amore, Paolo Fernández, Francisco Marcelo Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| topic_facet |
Ciencias Exactas Química finite attractive well perturbation expansion asymptotic expansion periodic boundary conditions square potential Dirac delta potential |
| description |
We compare two alternative expansions for finite attractive wells. One of them is known from long ago and is given in terms of powers of the strength parameter. The other one is based on the solution of the equations of the Rayleigh–Schrödinger perturbation theory in a basis set of functions of period L. The analysis of exactly solvable models shows that although the exact solution of the problem with periodic boundary conditions yields the correct result when L → ∞ the coefficients of the series for this same problem blow up and fail to produce the correct asymptotic expansion. |
| format |
Articulo Comunicacion |
| author |
Amore, Paolo Fernández, Francisco Marcelo |
| author_facet |
Amore, Paolo Fernández, Francisco Marcelo |
| author_sort |
Amore, Paolo |
| title |
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| title_short |
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| title_full |
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| title_fullStr |
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| title_full_unstemmed |
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469 |
| title_sort |
comment on: "ground state energies from converging and diverging power series expansions", <i>ann. phys</i>. 373 (2016): 456-469 |
| publishDate |
2017 |
| url |
http://sedici.unlp.edu.ar/handle/10915/109384 https://www.sciencedirect.com/science/article/abs/pii/S0003491616302883 |
| work_keys_str_mv |
AT amorepaolo commentongroundstateenergiesfromconverginganddivergingpowerseriesexpansionsiannphysi3732016456469 AT fernandezfranciscomarcelo commentongroundstateenergiesfromconverginganddivergingpowerseriesexpansionsiannphysi3732016456469 |
| bdutipo_str |
Repositorios |
| _version_ |
1764820443810758661 |