Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469

We compare two alternative expansions for finite attractive wells. One of them is known from long ago and is given in terms of powers of the strength parameter. The other one is based on the solution of the equations of the Rayleigh–Schrödinger perturbation theory in a basis set of functions of peri...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amore, Paolo, Fernández, Francisco Marcelo
Formato: Articulo Comunicacion
Lenguaje:Español
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/109384
https://www.sciencedirect.com/science/article/abs/pii/S0003491616302883
Aporte de:
id I19-R120-10915-109384
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Español
topic Ciencias Exactas
Química
finite attractive well
perturbation expansion
asymptotic expansion
periodic boundary conditions
square potential
Dirac delta potential
spellingShingle Ciencias Exactas
Química
finite attractive well
perturbation expansion
asymptotic expansion
periodic boundary conditions
square potential
Dirac delta potential
Amore, Paolo
Fernández, Francisco Marcelo
Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
topic_facet Ciencias Exactas
Química
finite attractive well
perturbation expansion
asymptotic expansion
periodic boundary conditions
square potential
Dirac delta potential
description We compare two alternative expansions for finite attractive wells. One of them is known from long ago and is given in terms of powers of the strength parameter. The other one is based on the solution of the equations of the Rayleigh–Schrödinger perturbation theory in a basis set of functions of period L. The analysis of exactly solvable models shows that although the exact solution of the problem with periodic boundary conditions yields the correct result when L → ∞ the coefficients of the series for this same problem blow up and fail to produce the correct asymptotic expansion.
format Articulo
Comunicacion
author Amore, Paolo
Fernández, Francisco Marcelo
author_facet Amore, Paolo
Fernández, Francisco Marcelo
author_sort Amore, Paolo
title Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
title_short Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
title_full Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
title_fullStr Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
title_full_unstemmed Comment on: "Ground state energies from converging and diverging power series expansions", <i>Ann. Phys</i>. 373 (2016): 456-469
title_sort comment on: "ground state energies from converging and diverging power series expansions", <i>ann. phys</i>. 373 (2016): 456-469
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/109384
https://www.sciencedirect.com/science/article/abs/pii/S0003491616302883
work_keys_str_mv AT amorepaolo commentongroundstateenergiesfromconverginganddivergingpowerseriesexpansionsiannphysi3732016456469
AT fernandezfranciscomarcelo commentongroundstateenergiesfromconverginganddivergingpowerseriesexpansionsiannphysi3732016456469
bdutipo_str Repositorios
_version_ 1764820443810758661