Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells

The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skelet...

Descripción completa

Detalles Bibliográficos
Autores principales: Pereyra, Andrea Soledad, Mykhaylyk, Olga, Falomir Lockhart, Eugenia, Taylor, Jackson Richard, Delbono, Osvaldo, Goya, Rodolfo Gustavo, Plank, Christian, Hereñú, Claudia Beatriz
Formato: Articulo
Lenguaje:Inglés
Publicado: 2016
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/104734
http://hdl.handle.net/11336/51671
Aporte de:
id I19-R120-10915-104734
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Bioquímica
Ciencias Médicas
Gene delivery
Skeletal muscle
Magnetic nanoparticles
Adenoviral vectors
Magnetofection
Magneto-adenovectors
spellingShingle Bioquímica
Ciencias Médicas
Gene delivery
Skeletal muscle
Magnetic nanoparticles
Adenoviral vectors
Magnetofection
Magneto-adenovectors
Pereyra, Andrea Soledad
Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
topic_facet Bioquímica
Ciencias Médicas
Gene delivery
Skeletal muscle
Magnetic nanoparticles
Adenoviral vectors
Magnetofection
Magneto-adenovectors
description The goal of magnetic field-assisted gene transfer is to enhance internalization of exogenous nucleic acids by association with magnetic nanoparticles (MNPs). This technique named magnetofection is particularly useful in difficult-to-transfect cells. It is well known that human, mouse, and rat skeletal muscle cells suffer a maturation-dependent loss of susceptibility to Recombinant Adenoviral vector (RAd) uptake. In postnatal, fully differentiated myofibers, the expression of the primary Coxsackie and Adenoviral membrane receptor (CAR) is severely downregulated representing a main hurdle for the use of these vectors in gene transfer/therapy. Here we demonstrate that assembling of Recombinant Adenoviral vectors with suitable iron oxide MNPs into magneto-adenovectors (RAd-MNP) and further exposure to a gradient magnetic field enables to efficiently overcome transduction resistance in skeletal muscle cells. Expression of Green Fluorescent Protein and Insulin-like Growth Factor 1 was significantly enhanced after magnetofection with RAd-MNPs complexes in C2C12 myotubes in vitro and mouse skeletal muscle in vivo when compared to transduction with naked virus. These results provide evidence that magnetofection, mainly due to its membrane-receptor independent mechanism, constitutes a simple and effective alternative to current methods for gene transfer into traditionally hard-to-transfect biological models.
format Articulo
Articulo
author Pereyra, Andrea Soledad
Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
author_facet Pereyra, Andrea Soledad
Mykhaylyk, Olga
Falomir Lockhart, Eugenia
Taylor, Jackson Richard
Delbono, Osvaldo
Goya, Rodolfo Gustavo
Plank, Christian
Hereñú, Claudia Beatriz
author_sort Pereyra, Andrea Soledad
title Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
title_short Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
title_full Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
title_fullStr Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
title_full_unstemmed Magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
title_sort magnetofection enhances adenoviral vector-based gene delivery in skeletal muscle cells
publishDate 2016
url http://sedici.unlp.edu.ar/handle/10915/104734
http://hdl.handle.net/11336/51671
work_keys_str_mv AT pereyraandreasoledad magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT mykhaylykolga magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT falomirlockharteugenia magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT taylorjacksonrichard magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT delbonoosvaldo magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT goyarodolfogustavo magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT plankchristian magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
AT herenuclaudiabeatriz magnetofectionenhancesadenoviralvectorbasedgenedeliveryinskeletalmusclecells
bdutipo_str Repositorios
_version_ 1764820442280886272