The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties

Recently, the proper orthogonal decomposition (POD) has generated a family of methods that allow system identification using output-only data. They all have been developed to overcome some of the POD limitations in the field of linear modal analysis. Two important achievement was accomplish by the s...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wagner, Gustavo, Foiny, Damien, Lima, Roberta, Sampaio, Rubens
Formato: Objeto de conferencia Resumen
Lenguaje:Inglés
Publicado: 2017
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/103834
https://cimec.org.ar/ojs/index.php/mc/article/view/5345
Aporte de:
id I19-R120-10915-103834
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Ingeniería
Orthogonal decomposition
Identification
spellingShingle Ingeniería
Orthogonal decomposition
Identification
Wagner, Gustavo
Foiny, Damien
Lima, Roberta
Sampaio, Rubens
The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
topic_facet Ingeniería
Orthogonal decomposition
Identification
description Recently, the proper orthogonal decomposition (POD) has generated a family of methods that allow system identification using output-only data. They all have been developed to overcome some of the POD limitations in the field of linear modal analysis. Two important achievement was accomplish by the smooth orthogonal decomposition (SOD) (Bellizzi and Sampaio, 2015) (Chelidze andZhou, 2006) (Farooq and Feeny, 2008): first, the method eliminates the need of a priori knowledge of the inertia matrix to relate the proper orthogonal modes (POMs) to the linear normal modes (LNMs). Second, the method allows a direct estimation of the system´s natural frequencies. Although this powerful tool has provided good predictions, experimental tests have shown inconsistent results when significant noise levels are present in the signal. Compared with other operational modal analysis identification techniques, the so far proposed SOD has shown to be the one with more noise sensitivity (Brincker and Ventura, 2015). The reason can be shown through an analysis of the noise distortion in the correlation estimation of the measured data. In this article, two new robust versions of the SOD are presented. They solve the problem of the noise sensibility and also have new important features. The robust versions of the SOD allow the identification of the modal parameters and their uncertainties, that the SOD could not do (Wagner et al., 2017). Thanks to the method simplicity, efficiency implementations can be use to perform real-time identification (duringthe data acquisition phase). An application shows how the methods are used.
format Objeto de conferencia
Resumen
author Wagner, Gustavo
Foiny, Damien
Lima, Roberta
Sampaio, Rubens
author_facet Wagner, Gustavo
Foiny, Damien
Lima, Roberta
Sampaio, Rubens
author_sort Wagner, Gustavo
title The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
title_short The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
title_full The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
title_fullStr The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
title_full_unstemmed The robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
title_sort robust smooth orthogonal decomposition for system identification: a new way to quantify the modal parameters uncertainties
publishDate 2017
url http://sedici.unlp.edu.ar/handle/10915/103834
https://cimec.org.ar/ojs/index.php/mc/article/view/5345
work_keys_str_mv AT wagnergustavo therobustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT foinydamien therobustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT limaroberta therobustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT sampaiorubens therobustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT wagnergustavo robustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT foinydamien robustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT limaroberta robustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
AT sampaiorubens robustsmoothorthogonaldecompositionforsystemidentificationanewwaytoquantifythemodalparametersuncertainties
bdutipo_str Repositorios
_version_ 1764820441197707264