Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures

We provide a twofold extension of Landau-Pollak uncertainty relations for mixed quantum states and for positive operator-valued measures, by recourse to geometric considerations. The generalization is based on metrics between pure states, having the form of a function of the square of the inner prod...

Descripción completa

Detalles Bibliográficos
Autores principales: Bosyk, Gustavo Martín, Zozor, Steeve, Portesi, Mariela Adelina, Osán, Tristán Martín, Lamberti, Pedro Walter
Formato: Articulo Preprint
Lenguaje:Inglés
Publicado: 2014
Materias:
Acceso en línea:http://sedici.unlp.edu.ar/handle/10915/100725
https://ri.conicet.gov.ar/11336/37357
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.052114
https://arxiv.org/abs/1406.3537
Aporte de:
id I19-R120-10915-100725
record_format dspace
institution Universidad Nacional de La Plata
institution_str I-19
repository_str R-120
collection SEDICI (UNLP)
language Inglés
topic Física
Landau-Pollak inequality
Uncertainty relations
Metrics
Mixed states
POVM
spellingShingle Física
Landau-Pollak inequality
Uncertainty relations
Metrics
Mixed states
POVM
Bosyk, Gustavo Martín
Zozor, Steeve
Portesi, Mariela Adelina
Osán, Tristán Martín
Lamberti, Pedro Walter
Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
topic_facet Física
Landau-Pollak inequality
Uncertainty relations
Metrics
Mixed states
POVM
description We provide a twofold extension of Landau-Pollak uncertainty relations for mixed quantum states and for positive operator-valued measures, by recourse to geometric considerations. The generalization is based on metrics between pure states, having the form of a function of the square of the inner product between the states. The triangle inequality satisfied by such metrics plays a crucial role in our derivation. The usual Landau-Pollak inequality is thus a particular case (derived from Wootters metric) of the family of inequalities obtained, and, moreover, we show that it is the most restrictive relation within the family.
format Articulo
Preprint
author Bosyk, Gustavo Martín
Zozor, Steeve
Portesi, Mariela Adelina
Osán, Tristán Martín
Lamberti, Pedro Walter
author_facet Bosyk, Gustavo Martín
Zozor, Steeve
Portesi, Mariela Adelina
Osán, Tristán Martín
Lamberti, Pedro Walter
author_sort Bosyk, Gustavo Martín
title Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
title_short Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
title_full Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
title_fullStr Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
title_full_unstemmed Geometric approach to extend Landau-Pollak uncertainty relations for positive operator-valued measures
title_sort geometric approach to extend landau-pollak uncertainty relations for positive operator-valued measures
publishDate 2014
url http://sedici.unlp.edu.ar/handle/10915/100725
https://ri.conicet.gov.ar/11336/37357
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.90.052114
https://arxiv.org/abs/1406.3537
work_keys_str_mv AT bosykgustavomartin geometricapproachtoextendlandaupollakuncertaintyrelationsforpositiveoperatorvaluedmeasures
AT zozorsteeve geometricapproachtoextendlandaupollakuncertaintyrelationsforpositiveoperatorvaluedmeasures
AT portesimarielaadelina geometricapproachtoextendlandaupollakuncertaintyrelationsforpositiveoperatorvaluedmeasures
AT osantristanmartin geometricapproachtoextendlandaupollakuncertaintyrelationsforpositiveoperatorvaluedmeasures
AT lambertipedrowalter geometricapproachtoextendlandaupollakuncertaintyrelationsforpositiveoperatorvaluedmeasures
bdutipo_str Repositorios
_version_ 1764820440730042369