Búsqueda de mejoras en la detección automática de estrellas variables
La astronomía está atravesando una profunda transformación debido al desarrollo de modernos telescopios terrestres y satelitales, que han fomentado la realización de enormes relevamientos astronómicos. Ante la abrumadora cantidad y calidad de los datos generados, se vuelve imprescindible el us...
Autor principal: | |
---|---|
Otros Autores: | |
Formato: | bachelorThesis Tésis de Grado |
Lenguaje: | Español |
Publicado: |
Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario
2022
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/2133/23748 http://hdl.handle.net/2133/23748 |
Aporte de: |
id |
I15-R121-2133-23748 |
---|---|
record_format |
dspace |
institution |
Universidad Nacional de Rosario |
institution_str |
I-15 |
repository_str |
R-121 |
collection |
Repositorio Hipermedial de la Universidad Nacional de Rosario (UNR) |
language |
Español |
topic |
Astronomía Aprendizaje automatizado Estrellas variables |
spellingShingle |
Astronomía Aprendizaje automatizado Estrellas variables Rodríguez, Jeremías Búsqueda de mejoras en la detección automática de estrellas variables |
topic_facet |
Astronomía Aprendizaje automatizado Estrellas variables |
description |
La astronomía está atravesando una profunda transformación debido al desarrollo de modernos telescopios terrestres y satelitales, que han fomentado la realización de enormes relevamientos astronómicos. Ante la abrumadora cantidad y calidad de los datos generados, se vuelve imprescindible el uso de procedimientos automatizados. Consecuentemente, diversas técnicas de aprendizaje automatizado y minería de datos surgen como una elección natural a la hora de analizar y extraer información de modernos datasets astronómicos.
En este trabajo se hará uso de mediciones generadas por el relevamiento VVV del infrarrojo cercano (realizado en Parnal, Chile), que relevó aproximadamente 109 estrellas durante un período de 5 años. Se aplicarán diversas técnicas de aprendizaje automatizado con el objeto de identificar estrellas de tipo RR Lyrae, las cuales son extremadamente valiosas pues permiten estimar distancias a viejas poblaciones estelares. En concreto, se hará uso de clasificadores de tipo Random Forest y Support Vector Machine, haciendo ́énfasis en comprender por qué los primeros parecen tener significativamente mejor performance en este tipo de datasets astronómicos. |
author2 |
Granitto, Pablo M. |
author_facet |
Granitto, Pablo M. Rodríguez, Jeremías |
format |
bachelorThesis Tésis de Grado |
author |
Rodríguez, Jeremías |
author_sort |
Rodríguez, Jeremías |
title |
Búsqueda de mejoras en la detección automática de estrellas variables |
title_short |
Búsqueda de mejoras en la detección automática de estrellas variables |
title_full |
Búsqueda de mejoras en la detección automática de estrellas variables |
title_fullStr |
Búsqueda de mejoras en la detección automática de estrellas variables |
title_full_unstemmed |
Búsqueda de mejoras en la detección automática de estrellas variables |
title_sort |
búsqueda de mejoras en la detección automática de estrellas variables |
publisher |
Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Universidad Nacional de Rosario |
publishDate |
2022 |
url |
http://hdl.handle.net/2133/23748 http://hdl.handle.net/2133/23748 |
work_keys_str_mv |
AT rodriguezjeremias busquedademejorasenladeteccionautomaticadeestrellasvariables |
bdutipo_str |
Repositorios |
_version_ |
1764820411571240961 |