Time–Adaptive Support Vector Machines
In this work we propose an adaptive classification method able both to learn and to follow the temporal evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using multiple hyperplanes valid only at small temporal intervals (windows). In contrast to oth...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | Artículo |
| Lenguaje: | en_US |
| Publicado: |
Asociación Española de Inteligencia Artificial
2011
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/2133/1718 http://hdl.handle.net/2133/1718 |
| Aporte de: |
| id |
I15-R121-2133-1718 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Rosario |
| institution_str |
I-15 |
| repository_str |
R-121 |
| collection |
Repositorio Hipermedial de la Universidad Nacional de Rosario (UNR) |
| language |
en_US |
| orig_language_str_mv |
en_US |
| topic |
Adaptive methods Support Vector Machine Drifting concepts |
| spellingShingle |
Adaptive methods Support Vector Machine Drifting concepts Grinblat, Guillermo Granitto, Pablo M. Ceccatto, Alejandro Time–Adaptive Support Vector Machines |
| topic_facet |
Adaptive methods Support Vector Machine Drifting concepts |
| description |
In this work we propose an adaptive classification method able both to learn and to follow the temporal
evolution of a drifting concept. With that purpose we introduce a modified SVM classifier, created using
multiple hyperplanes valid only at small temporal intervals (windows). In contrast to other strategies
proposed in the literature, our method learns all hyperplanes in a global way, minimizing a cost function
that evaluates the error committed by this family of local classifiers plus a measure associated to the VC
dimension of the family. We also show how the idea of slowly changing classifiers can be applied to non-linear
stationary concepts with results similar to those obtained with normal SVMs using gaussian kernels. |
| format |
Article |
| author |
Grinblat, Guillermo Granitto, Pablo M. Ceccatto, Alejandro |
| author_facet |
Grinblat, Guillermo Granitto, Pablo M. Ceccatto, Alejandro |
| author_sort |
Grinblat, Guillermo |
| title |
Time–Adaptive Support Vector Machines |
| title_short |
Time–Adaptive Support Vector Machines |
| title_full |
Time–Adaptive Support Vector Machines |
| title_fullStr |
Time–Adaptive Support Vector Machines |
| title_full_unstemmed |
Time–Adaptive Support Vector Machines |
| title_sort |
time–adaptive support vector machines |
| publisher |
Asociación Española de Inteligencia Artificial |
| publishDate |
2011 |
| url |
http://hdl.handle.net/2133/1718 http://hdl.handle.net/2133/1718 |
| work_keys_str_mv |
AT grinblatguillermo timeadaptivesupportvectormachines AT granittopablom timeadaptivesupportvectormachines AT ceccattoalejandro timeadaptivesupportvectormachines |
| bdutipo_str |
Repositorios |
| _version_ |
1764820410587676675 |