Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish
Basic emotion classification is one of the main tasks of Sentiment Analysis usuallyperformed by using several machine learning techniques. One of the main issues inSentiment Analysis is the availability of tagged resources to properly train super-vised classification algorithms. This is of particula...
Guardado en:
| Autores principales: | , , , , |
|---|---|
| Otros Autores: | |
| Formato: | Artículo acceptedVersion |
| Lenguaje: | Inglés |
| Publicado: |
Springer Science+Business Media, LLC, part of Springer Nature
2023
|
| Materias: | |
| Acceso en línea: | http://repositorio.unnoba.edu.ar/xmlui/handle/23601/645 |
| Aporte de: |
| id |
I103-R405-23601-645 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional del Noroeste de la Provincia de Buenos Aires |
| institution_str |
I-103 |
| repository_str |
R-405 |
| collection |
Re DI Repositorio Digital UNNOBA |
| language |
Inglés |
| topic |
Distant supervision Basic emotion classification Contextual information Social media |
| spellingShingle |
Distant supervision Basic emotion classification Contextual information Social media Tessore, Juan Pablo Esnaola, Leonardo Martín Ramón, Hugo Dionisio Lanzarini, Laura Baldassarri, Sandra Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| topic_facet |
Distant supervision Basic emotion classification Contextual information Social media |
| description |
Basic emotion classification is one of the main tasks of Sentiment Analysis usuallyperformed by using several machine learning techniques. One of the main issues inSentiment Analysis is the availability of tagged resources to properly train super-vised classification algorithms. This is of particular concern in languages other thanEnglish, such as Spanish, where scarcity of these resources is the norm. In addition,most basic emotion datasets available in Spanish are rather small, containing a few hundred (or thousand) samples. Usually, the samples only contain a short text(frequently a comment) and a tag (the basic emotion), omitting crucial contextualinformation that may help to improve the classification task results. In this paper, theimpact of using contextual information is measured on a recently published Spanishbasic emotion dataset and the baseline architecture proposed in the Semantic Eval-uation 2019 competition. This particular dataset has two main advantages for thispaper. First, it was compiled using Distant Supervision and as a result it containsseveral hundred thousand samples. Secondly, the authors included valuable contex-tual information for each comment. The results show that contextual information,such as news headlines or summaries, helps improve the classification accuracy overa dataset of distantly supervised basic emotion labelled comments. |
| author2 |
0000-0002-2111-0976 |
| author_facet |
0000-0002-2111-0976 Tessore, Juan Pablo Esnaola, Leonardo Martín Ramón, Hugo Dionisio Lanzarini, Laura Baldassarri, Sandra |
| format |
Artículo Artículo acceptedVersion Artículo Artículo acceptedVersion Artículo Artículo acceptedVersion |
| author |
Tessore, Juan Pablo Esnaola, Leonardo Martín Ramón, Hugo Dionisio Lanzarini, Laura Baldassarri, Sandra |
| author_sort |
Tessore, Juan Pablo |
| title |
Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| title_short |
Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| title_full |
Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| title_fullStr |
Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| title_full_unstemmed |
Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish |
| title_sort |
contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in spanish |
| publisher |
Springer Science+Business Media, LLC, part of Springer Nature |
| publishDate |
2023 |
| url |
http://repositorio.unnoba.edu.ar/xmlui/handle/23601/645 |
| work_keys_str_mv |
AT tessorejuanpablo contextualinformationusagefortheenhancementofbasicemotionclassificationinaweaklylabelledsocialnetworkdatasetinspanish AT esnaolaleonardomartin contextualinformationusagefortheenhancementofbasicemotionclassificationinaweaklylabelledsocialnetworkdatasetinspanish AT ramonhugodionisio contextualinformationusagefortheenhancementofbasicemotionclassificationinaweaklylabelledsocialnetworkdatasetinspanish AT lanzarinilaura contextualinformationusagefortheenhancementofbasicemotionclassificationinaweaklylabelledsocialnetworkdatasetinspanish AT baldassarrisandra contextualinformationusagefortheenhancementofbasicemotionclassificationinaweaklylabelledsocialnetworkdatasetinspanish |
| _version_ |
1850060746201759744 |
| spelling |
I103-R405-23601-6452023-12-07T20:38:14Z Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish Tessore, Juan Pablo Esnaola, Leonardo Martín Ramón, Hugo Dionisio Lanzarini, Laura Baldassarri, Sandra 0000-0002-2111-0976 0000-0001-6298-9019 0000-0003-1577-3092 0000-0001-7027-7564 0000-0002-9315-6391 Distant supervision Basic emotion classification Contextual information Social media Basic emotion classification is one of the main tasks of Sentiment Analysis usuallyperformed by using several machine learning techniques. One of the main issues inSentiment Analysis is the availability of tagged resources to properly train super-vised classification algorithms. This is of particular concern in languages other thanEnglish, such as Spanish, where scarcity of these resources is the norm. In addition,most basic emotion datasets available in Spanish are rather small, containing a few hundred (or thousand) samples. Usually, the samples only contain a short text(frequently a comment) and a tag (the basic emotion), omitting crucial contextualinformation that may help to improve the classification task results. In this paper, theimpact of using contextual information is measured on a recently published Spanishbasic emotion dataset and the baseline architecture proposed in the Semantic Eval-uation 2019 competition. This particular dataset has two main advantages for thispaper. First, it was compiled using Distant Supervision and as a result it containsseveral hundred thousand samples. Secondly, the authors included valuable contex-tual information for each comment. The results show that contextual information,such as news headlines or summaries, helps improve the classification accuracy overa dataset of distantly supervised basic emotion labelled comments. Fil: Tessore, Juan Pablo. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Instituto de Investigación y Transferencia en Tecnología. Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Fil: Esnaola, Leonardo Martín. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Instituto de Investigación y Transferencia en Tecnología. Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Fil: Ramón, Hugo Dionisio. Universidad Nacional del Noroeste de la Provincia de Buenos Aires. Instituto de Investigación y Transferencia en Tecnología. Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Fil: Lanzarini, Laura. Universidad Nacional de La Plata. Facultad de Informática. Instituto de Investigación en Informática. Centro Asociado a la Comisión de Investigaciones Científicas de la Provincia de Buenos Aires; Argentina. Fil: Baldassarri, Sandra. Universidad de Zaragoza. Departamento de Informática e Ingeniería de Sistemas; España. Con referato 2023-12-07T18:20:25Z info:eu-repo/date/embargoEnd/2023-09-15 2023-12-07T18:20:25Z 2022-09-15 info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion info:eu-repo/semantics/article info:ar-repo/semantics/artículo info:eu-repo/semantics/acceptedVersion Tessore, J., Esnaola L., Ramon, H., Lanzarini, L. y Baldassarri, S. (2022). Contextual information usage for the enhancement of basic emotion classification in a weakly labelled social network dataset in Spanish. Multimedia Tools and Applications, 82, 9871-9890. 1573-7721 1380-7501 http://repositorio.unnoba.edu.ar/xmlui/handle/23601/645 eng info:eu-repo/grantAgreement/UNNOBA/SIB2017/EXP 2101/2022/AR. Buenos Aires/Inteligencia artificial como herramienta para innovar y dinamizar procesos https://link.springer.com/article/10.1007/s11042-022-13750-x info:eu-repo/semantics/embargoedAccess https://creativecommons.org/licenses/by-nc-nd/2.5/ar/ application/pdf application/pdf Springer Science+Business Media, LLC, part of Springer Nature Multimedia Tools and Applications |