Spatially correlated data: structural analysis
We introduce and investigate the underlying theoretical framework for spatially correlated data in this article. More specifically, we characterise the mechanism that generates the data, investigate its various covariance structures, and characterise the many stationarity classes that are typically...
Autores principales: | , , |
---|---|
Formato: | Artículo revista |
Lenguaje: | Español |
Publicado: |
Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
2024
|
Materias: | |
Acceso en línea: | https://revistas.unc.edu.ar/index.php/REM/article/view/41782 |
Aporte de: |
id |
I10-R366-article-41782 |
---|---|
record_format |
ojs |
spelling |
I10-R366-article-417822024-12-21T01:11:43Z Spatially correlated data: structural analysis Datos correlacionados espacialmente: análisis estructural Lovatto, Mariel Guadalupe Llop, Pamela García Arancibia, Rodrigo Proceso estocástico Datos Espacialmente correlacionados Estacionariedad Stochastic Process Spatially Correlated Data Stationarity We introduce and investigate the underlying theoretical framework for spatially correlated data in this article. More specifically, we characterise the mechanism that generates the data, investigate its various covariance structures, and characterise the many stationarity classes that are typically considered for this type of data. Furthermore, we investigate the theoretical and empirical semivariogram, which is likely the most extensively used tool for measuring spatial correlation. We believe that this work can be a valuable resource for the study of spatial data and its primary properties, which might be integrated into a modern statistics course. En este artículo introducimos y estudiamos el marco teórico subyacente para datos espacialmente correlacionados. Más precisamente, definimos el proceso que genera los datos, estudiamos sus diferentes estructuras de covarianza y caracterizamos las diferentes clases de estacionariedad consideradas habitualmente para este tipo de datos. Además, estudiamos en profundidad el semivariograma teórico y empírico, la herramienta tal vez más utilizada para medir correlación espacial. Consideramos que este trabajo puede ser un material útil para el estudio y la enseñanza de los datos espaciales y sus principales características, que potencialmente pueden introducirse en un curso moderno de estadística. Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2024-12-20 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares application/pdf https://revistas.unc.edu.ar/index.php/REM/article/view/41782 10.33044/revem.41782 Revista de Educación Matemática; Vol. 39 Núm. 3 (2024); 5-40 1852-2890 0326-8780 spa https://revistas.unc.edu.ar/index.php/REM/article/view/41782/47994 Derechos de autor 2024 Mariel Guadalupe Lovatto, Pamela Llop, Rodrigo García Arancibia https://creativecommons.org/licenses/by-sa/4.0/ |
institution |
Universidad Nacional de Córdoba |
institution_str |
I-10 |
repository_str |
R-366 |
container_title_str |
Revista de Educación Matemática |
language |
Español |
format |
Artículo revista |
topic |
Proceso estocástico Datos Espacialmente correlacionados Estacionariedad Stochastic Process Spatially Correlated Data Stationarity |
spellingShingle |
Proceso estocástico Datos Espacialmente correlacionados Estacionariedad Stochastic Process Spatially Correlated Data Stationarity Lovatto, Mariel Guadalupe Llop, Pamela García Arancibia, Rodrigo Spatially correlated data: structural analysis |
topic_facet |
Proceso estocástico Datos Espacialmente correlacionados Estacionariedad Stochastic Process Spatially Correlated Data Stationarity |
author |
Lovatto, Mariel Guadalupe Llop, Pamela García Arancibia, Rodrigo |
author_facet |
Lovatto, Mariel Guadalupe Llop, Pamela García Arancibia, Rodrigo |
author_sort |
Lovatto, Mariel Guadalupe |
title |
Spatially correlated data: structural analysis |
title_short |
Spatially correlated data: structural analysis |
title_full |
Spatially correlated data: structural analysis |
title_fullStr |
Spatially correlated data: structural analysis |
title_full_unstemmed |
Spatially correlated data: structural analysis |
title_sort |
spatially correlated data: structural analysis |
description |
We introduce and investigate the underlying theoretical framework for spatially correlated data in this article. More specifically, we characterise the mechanism that generates the data, investigate its various covariance structures, and characterise the many stationarity classes that are typically considered for this type of data. Furthermore, we investigate the theoretical and empirical semivariogram, which is likely the most extensively used tool for measuring spatial correlation. We believe that this work can be a valuable resource for the study of spatial data and its primary properties, which might be integrated into a modern statistics course.
|
publisher |
Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación |
publishDate |
2024 |
url |
https://revistas.unc.edu.ar/index.php/REM/article/view/41782 |
work_keys_str_mv |
AT lovattomarielguadalupe spatiallycorrelateddatastructuralanalysis AT lloppamela spatiallycorrelateddatastructuralanalysis AT garciaarancibiarodrigo spatiallycorrelateddatastructuralanalysis AT lovattomarielguadalupe datoscorrelacionadosespacialmenteanalisisestructural AT lloppamela datoscorrelacionadosespacialmenteanalisisestructural AT garciaarancibiarodrigo datoscorrelacionadosespacialmenteanalisisestructural |
first_indexed |
2025-02-05T22:15:23Z |
last_indexed |
2025-02-05T22:15:23Z |
_version_ |
1823257367469359104 |