Doubly countable partitions and Hilbert hotels
Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of t...
Autores principales: | , |
---|---|
Formato: | Artículo revista |
Lenguaje: | Español |
Publicado: |
Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
2021
|
Materias: | |
Acceso en línea: | https://revistas.unc.edu.ar/index.php/REM/article/view/32687 |
Aporte de: |
id |
I10-R366-article-32687 |
---|---|
record_format |
ojs |
spelling |
I10-R366-article-326872021-08-19T16:15:33Z Doubly countable partitions and Hilbert hotels Retornando al Hotel de Hilbert Jorge, Juan Pablo Vázquez, Hernán Luis Particiones de los naturales Hotel de Hilbert Uniones numerables Matemática aplicada Partition of natural numbers Hilbert's Hotel Countable unions Applied mathematics Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of these special partitions and shows howto generate infinite of them. This line of reasoning can have multiple applications in Set theory and Model theory. We proved that the number of ways to make these partitionsof natural numbers is not countable, there are more of these partitions (named doubly countable) than natural numbers. For each natural number greater than 1, we show aneffective procedure that generates these partitions. Se construyen particiones particulares del conjunto de los naturales a través de procesos recursivos generando, de esta manera, numerables ejemplos de conjuntos numerables y disjuntos cuya unión es un conjunto también numerable. El proceso es constructivo por lo cual no se hace uso del axioma de elección. Se presenta un programa que genera una de estas particiones especiales y se muestra cómo generar infinitas de las mismas. Esta línea de razonamiento puede tener múltiples aplicaciones en la teoría de conjuntos y de modelos. Probamos que la cantidad de formas de realizar estas particiones de los naturales es no numerable, existe mayor cantidad de estas particiones, bautizadas doblemente numerables, que números naturales. Para cada número natural mayor que 1, mostramosun procedimiento efectivo que genera estas particiones. Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2021-07-30 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares application/pdf https://revistas.unc.edu.ar/index.php/REM/article/view/32687 10.33044/revem.32687 Revista de Educación Matemática; Vol. 36 Núm. 2 (2021); 67-87 1852-2890 0326-8780 spa https://revistas.unc.edu.ar/index.php/REM/article/view/32687/34705 Derechos de autor 2021 Juan Pablo Jorge, Hernán Luis Vázquez https://creativecommons.org/licenses/by-sa/4.0/ |
institution |
Universidad Nacional de Córdoba |
institution_str |
I-10 |
repository_str |
R-366 |
container_title_str |
Revista de Educación Matemática |
language |
Español |
format |
Artículo revista |
topic |
Particiones de los naturales Hotel de Hilbert Uniones numerables Matemática aplicada Partition of natural numbers Hilbert's Hotel Countable unions Applied mathematics |
spellingShingle |
Particiones de los naturales Hotel de Hilbert Uniones numerables Matemática aplicada Partition of natural numbers Hilbert's Hotel Countable unions Applied mathematics Jorge, Juan Pablo Vázquez, Hernán Luis Doubly countable partitions and Hilbert hotels |
topic_facet |
Particiones de los naturales Hotel de Hilbert Uniones numerables Matemática aplicada Partition of natural numbers Hilbert's Hotel Countable unions Applied mathematics |
author |
Jorge, Juan Pablo Vázquez, Hernán Luis |
author_facet |
Jorge, Juan Pablo Vázquez, Hernán Luis |
author_sort |
Jorge, Juan Pablo |
title |
Doubly countable partitions and Hilbert hotels |
title_short |
Doubly countable partitions and Hilbert hotels |
title_full |
Doubly countable partitions and Hilbert hotels |
title_fullStr |
Doubly countable partitions and Hilbert hotels |
title_full_unstemmed |
Doubly countable partitions and Hilbert hotels |
title_sort |
doubly countable partitions and hilbert hotels |
description |
Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of these special partitions and shows howto generate infinite of them. This line of reasoning can have multiple applications in Set theory and Model theory. We proved that the number of ways to make these partitionsof natural numbers is not countable, there are more of these partitions (named doubly countable) than natural numbers. For each natural number greater than 1, we show aneffective procedure that generates these partitions. |
publisher |
Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación |
publishDate |
2021 |
url |
https://revistas.unc.edu.ar/index.php/REM/article/view/32687 |
work_keys_str_mv |
AT jorgejuanpablo doublycountablepartitionsandhilberthotels AT vazquezhernanluis doublycountablepartitionsandhilberthotels AT jorgejuanpablo retornandoalhoteldehilbert AT vazquezhernanluis retornandoalhoteldehilbert |
first_indexed |
2024-09-03T22:36:50Z |
last_indexed |
2024-09-03T22:36:50Z |
_version_ |
1809216186939867136 |