Doubly countable partitions and Hilbert hotels

Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of t...

Descripción completa

Detalles Bibliográficos
Autores principales: Jorge, Juan Pablo, Vázquez, Hernán Luis
Formato: Artículo revista
Lenguaje:Español
Publicado: Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2021
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/REM/article/view/32687
Aporte de:
id I10-R366-article-32687
record_format ojs
spelling I10-R366-article-326872021-08-19T16:15:33Z Doubly countable partitions and Hilbert hotels Retornando al Hotel de Hilbert Jorge, Juan Pablo Vázquez, Hernán Luis Particiones de los naturales Hotel de Hilbert Uniones numerables Matemática aplicada Partition of natural numbers Hilbert's Hotel Countable unions Applied mathematics Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of these special partitions and shows howto generate infinite of them. This line of reasoning can have multiple applications in Set theory and Model theory. We proved that the number of ways to make these partitionsof natural numbers is not countable, there are more of these partitions (named doubly countable) than natural numbers. For each natural number greater than 1, we show aneffective procedure that generates these partitions. Se construyen particiones particulares del conjunto de los naturales a través de procesos recursivos generando, de esta manera, numerables ejemplos de conjuntos numerables y disjuntos cuya unión es un conjunto también numerable. El proceso es constructivo por lo cual no se hace uso del axioma de elección. Se presenta un programa que genera una de estas particiones especiales y se muestra cómo generar infinitas de las mismas. Esta línea de razonamiento puede tener múltiples aplicaciones en la teoría de conjuntos y de modelos. Probamos que la cantidad de formas de realizar estas particiones de los naturales es no numerable, existe mayor cantidad de estas particiones, bautizadas doblemente numerables, que números naturales. Para cada número natural mayor que 1, mostramosun procedimiento efectivo que genera estas particiones. Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación 2021-07-30 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Artículo evaluado por pares application/pdf https://revistas.unc.edu.ar/index.php/REM/article/view/32687 10.33044/revem.32687 Revista de Educación Matemática; Vol. 36 Núm. 2 (2021); 67-87 1852-2890 0326-8780 spa https://revistas.unc.edu.ar/index.php/REM/article/view/32687/34705 Derechos de autor 2021 Juan Pablo Jorge, Hernán Luis Vázquez https://creativecommons.org/licenses/by-sa/4.0/
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-366
container_title_str Revista de Educación Matemática
language Español
format Artículo revista
topic Particiones de los naturales
Hotel de Hilbert
Uniones numerables
Matemática aplicada
Partition of natural numbers
Hilbert's Hotel
Countable unions
Applied mathematics
spellingShingle Particiones de los naturales
Hotel de Hilbert
Uniones numerables
Matemática aplicada
Partition of natural numbers
Hilbert's Hotel
Countable unions
Applied mathematics
Jorge, Juan Pablo
Vázquez, Hernán Luis
Doubly countable partitions and Hilbert hotels
topic_facet Particiones de los naturales
Hotel de Hilbert
Uniones numerables
Matemática aplicada
Partition of natural numbers
Hilbert's Hotel
Countable unions
Applied mathematics
author Jorge, Juan Pablo
Vázquez, Hernán Luis
author_facet Jorge, Juan Pablo
Vázquez, Hernán Luis
author_sort Jorge, Juan Pablo
title Doubly countable partitions and Hilbert hotels
title_short Doubly countable partitions and Hilbert hotels
title_full Doubly countable partitions and Hilbert hotels
title_fullStr Doubly countable partitions and Hilbert hotels
title_full_unstemmed Doubly countable partitions and Hilbert hotels
title_sort doubly countable partitions and hilbert hotels
description Some partitions of Natural Number set are built through recursive processesgenerating in this manner countable examples of countable and disjoint sets whose union is a set also countable. This process is constructive, so the Axiom of choice is not used.We provide a PC program that generates one of these special partitions and shows howto generate infinite of them. This line of reasoning can have multiple applications in Set theory and Model theory. We proved that the number of ways to make these partitionsof natural numbers is not countable, there are more of these partitions (named doubly countable) than natural numbers. For each natural number greater than 1, we show aneffective procedure that generates these partitions.
publisher Unión Matemática Argentina - Facultad de Matemática, Astronomía, Física y Computación
publishDate 2021
url https://revistas.unc.edu.ar/index.php/REM/article/view/32687
work_keys_str_mv AT jorgejuanpablo doublycountablepartitionsandhilberthotels
AT vazquezhernanluis doublycountablepartitionsandhilberthotels
AT jorgejuanpablo retornandoalhoteldehilbert
AT vazquezhernanluis retornandoalhoteldehilbert
first_indexed 2024-09-03T22:36:50Z
last_indexed 2024-09-03T22:36:50Z
_version_ 1809216186939867136