Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract
Attention Deficit Hyperactivity Disorder (ADHD) affects approximately 13% of the child population; its diagnosis is based on clinical and behavioral assessments and psychometrics test results. Recently, Machine Learning (ML) has been used to detect various neuropsychiatric conditions, providing grea...
Guardado en:
| Autores principales: | , , , |
|---|---|
| Formato: | Artículo revista |
| Lenguaje: | Español |
| Publicado: |
Universidad Nacional de Córdoba
2024
|
| Materias: | |
| Acceso en línea: | https://revistas.unc.edu.ar/index.php/racc/article/view/42221 |
| Aporte de: |
| id |
I10-R363-article-42221 |
|---|---|
| record_format |
ojs |
| spelling |
I10-R363-article-422212024-09-04T18:32:23Z Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract Predicción del TDAH con Aprendizaje de Máquinas: Revisión Sistemática de Literatura Quintero-López, Catalina Gil Vera, Víctor Daniel Cerpa Bernal, Rafael Mauricio Herrera Martínez, Marcelo ADHD diagnosis machine learning predictive modeling aprendizaje de máquinas diagnóstico modelado predictivo TDAH Attention Deficit Hyperactivity Disorder (ADHD) affects approximately 13% of the child population; its diagnosis is based on clinical and behavioral assessments and psychometrics test results. Recently, Machine Learning (ML) has been used to detect various neuropsychiatric conditions, providing greater diagnostic accuracy. The aim of this research was to conduct a systematic literature review (SLR) on the detection of ADHD in infants’ witch ML. Based on the PRISMA methodology, 30 publications were selected from Web of Science (WoS) and Scopus which met the eligibility criteria. This paper concludes that the most used technique for ADHD detection was Support Vector Machines, the best-performing model was obtained from psychometrics test. An accurate and early diagnosis of ADHD prevents long-term complications; emotional, academic, and social problems, as well as the development of an antisocial structure. El Trastorno por Déficit de Atención e Hiperactividad (TDAH) tiene una prevalencia estimada del 5.3% en la población mundial; su diagnóstico se basa en evaluaciones clínicas, conductuales y resultados de pruebas psicométricas. Recientemente el Aprendizaje de Máquinas (AM) se ha empleado para detectar diversas condiciones neuropsiquiátricas, brindando una mayor precisión diagnóstica. El objetivo de este estudio fue realizar una revisión sistemática de la literatura (RSL) sobre la detección del TDAH en infantes con AM. Con base en la metodología PRISMA, se seleccionaron 30 publicaciones de WebofScience (WoS) y Scopus, que cumplieron los criterios de elegibilidad. Se concluye que la técnica más empleada para detectar el TDAH fue Máquinas de Vectores de Soporte, el modelo con el mejor desempeño se obtuvo de pruebas psicométricas. Un diagnóstico certero y temprano del TDAH previene complicaciones a largo plazo, problemas emocionales, académicos y sociales, así como el desarrollo de una estructura antisocial. Universidad Nacional de Córdoba 2024-08-31 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/racc/article/view/42221 10.32348/1852.4206.v16.n3.42221 Argentinean Journal of Behavioral Sciences; Vol. 16 No. 3 (2024): Revista Argentina de Ciencias del Comportamiento; 14-32 Revista Argentina de Ciencias del Comportamiento; Vol. 16 Núm. 3 (2024): Revista Argentina de Ciencias del Comportamiento; 14-32 1852-4206 10.32348/1852.4206.v16.n3 spa https://revistas.unc.edu.ar/index.php/racc/article/view/42221/46457 Derechos de autor 2024 Catalina Quintero-López, Víctor Daniel Gil Vera, Rafael Mauricio Cerpa Bernal, Marcelo Herrera Martínez http://creativecommons.org/licenses/by/4.0 |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-363 |
| container_title_str |
Revista Argentina de Ciencias del Comportamiento |
| language |
Español |
| format |
Artículo revista |
| topic |
ADHD diagnosis machine learning predictive modeling aprendizaje de máquinas diagnóstico modelado predictivo TDAH |
| spellingShingle |
ADHD diagnosis machine learning predictive modeling aprendizaje de máquinas diagnóstico modelado predictivo TDAH Quintero-López, Catalina Gil Vera, Víctor Daniel Cerpa Bernal, Rafael Mauricio Herrera Martínez, Marcelo Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| topic_facet |
ADHD diagnosis machine learning predictive modeling aprendizaje de máquinas diagnóstico modelado predictivo TDAH |
| author |
Quintero-López, Catalina Gil Vera, Víctor Daniel Cerpa Bernal, Rafael Mauricio Herrera Martínez, Marcelo |
| author_facet |
Quintero-López, Catalina Gil Vera, Víctor Daniel Cerpa Bernal, Rafael Mauricio Herrera Martínez, Marcelo |
| author_sort |
Quintero-López, Catalina |
| title |
Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| title_short |
Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| title_full |
Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| title_fullStr |
Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| title_full_unstemmed |
Prediction of ADHD with Machine Learning: A Systematic Literature Review Abstract |
| title_sort |
prediction of adhd with machine learning: a systematic literature review abstract |
| description |
Attention Deficit Hyperactivity Disorder (ADHD) affects approximately 13% of the child population; its diagnosis is based on clinical and behavioral assessments and psychometrics test results. Recently, Machine Learning (ML) has been used to detect various neuropsychiatric conditions, providing greater diagnostic accuracy. The aim of this research was to conduct a systematic literature review (SLR) on the detection of ADHD in infants’ witch ML. Based on the PRISMA methodology, 30 publications were selected from Web of Science (WoS) and Scopus which met the eligibility criteria. This paper concludes that the most used technique for ADHD detection was Support Vector Machines, the best-performing model was obtained from psychometrics test. An accurate and early diagnosis of ADHD prevents long-term complications; emotional, academic, and social problems, as well as the development of an antisocial structure. |
| publisher |
Universidad Nacional de Córdoba |
| publishDate |
2024 |
| url |
https://revistas.unc.edu.ar/index.php/racc/article/view/42221 |
| work_keys_str_mv |
AT quinterolopezcatalina predictionofadhdwithmachinelearningasystematicliteraturereviewabstract AT gilveravictordaniel predictionofadhdwithmachinelearningasystematicliteraturereviewabstract AT cerpabernalrafaelmauricio predictionofadhdwithmachinelearningasystematicliteraturereviewabstract AT herreramartinezmarcelo predictionofadhdwithmachinelearningasystematicliteraturereviewabstract AT quinterolopezcatalina predicciondeltdahconaprendizajedemaquinasrevisionsistematicadeliteratura AT gilveravictordaniel predicciondeltdahconaprendizajedemaquinasrevisionsistematicadeliteratura AT cerpabernalrafaelmauricio predicciondeltdahconaprendizajedemaquinasrevisionsistematicadeliteratura AT herreramartinezmarcelo predicciondeltdahconaprendizajedemaquinasrevisionsistematicadeliteratura |
| first_indexed |
2024-09-03T22:31:38Z |
| last_indexed |
2025-02-05T22:15:00Z |
| _version_ |
1823257343499960320 |