Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges

Aim: To evaluate the effect of fiber reinforcement on flexural strength (FS), marginal adaptation (MA) and resistance to fatigue (RF) of bisacrylic resin provisional bridges. Methods: Two metal cores fixed to a metal base at a distance of 10mm of each other reproduced a simulated cast for a three-te...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Lipcen, K. C., Molina, G. F.
Formato: Artículo revista
Lenguaje:Español
Publicado: Facultad de Odontología 2018
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/RevFacOdonto/article/view/21055
Aporte de:
id I10-R335-article-21055
record_format ojs
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-335
container_title_str Revista de la Facultad de Odontología
language Español
format Artículo revista
topic Acrylic Resins
Dental Restoration
Temporary
Dental Materials
Resinas Acrílicas
Restauración Dental Provisional
Materiales Dentales
spellingShingle Acrylic Resins
Dental Restoration
Temporary
Dental Materials
Resinas Acrílicas
Restauración Dental Provisional
Materiales Dentales
Lipcen, K. C.
Molina, G. F.
Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
topic_facet Acrylic Resins
Dental Restoration
Temporary
Dental Materials
Resinas Acrílicas
Restauración Dental Provisional
Materiales Dentales
author Lipcen, K. C.
Molina, G. F.
author_facet Lipcen, K. C.
Molina, G. F.
author_sort Lipcen, K. C.
title Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
title_short Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
title_full Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
title_fullStr Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
title_full_unstemmed Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
title_sort incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges
description Aim: To evaluate the effect of fiber reinforcement on flexural strength (FS), marginal adaptation (MA) and resistance to fatigue (RF) of bisacrylic resin provisional bridges. Methods: Two metal cores fixed to a metal base at a distance of 10mm of each other reproduced a simulated cast for a three-teeth bridge with an extracted molar. A metal bridge was manufactured for this cast, representing teeth 45, 46 (phantom) and 47. This master-piece was used to obtain a polyether matrix (Impregum Regular, 3M Espe, Seefeld, Germany) for the production of provisional bridges for the three treatment groups using the following materials: A) PMMA; B) Bisacrylic resin (ProTemp 3, 3M Espe, St. Paul, USA); C) Bisacrylic resin + fiber reinforcement (Interlig, Angelus, Brazil). For each test, samples were supported using the metal base as a fixed platform. FS was assessed using a Universal Testing Machine (Digimess MX5000) at a crosshead speed of 1mm/min. FS was expressed in Newtons as the load at fracture of the samples. MA was evaluated as the distance between the distal-cervical margins of the crowns and the shoulder of the metal cores, at three moments of load charge (initial, 500N and 800N). RF was tested using dynamic forces as the number of cycles until fracture using a load charge of 80% of the static maximum force. Mann-Whitney U test (p<0.05) was used for statistical analysis. Results: Mean FS values were 810(80)N, 800(20)N y 990(20)N for groups A, B and C respectively. Bisacrylic resin groups resisted significantly more cycles until fracture than PMMA, being group C the one that resisted the most. Regarding MA test, a great dispersion of values among the three groups was observed. Conclusion: Addition of glass-fibers increased FS and RF of bisacrylic provisional bridges without an effect on MA
publisher Facultad de Odontología
publishDate 2018
url https://revistas.unc.edu.ar/index.php/RevFacOdonto/article/view/21055
work_keys_str_mv AT lipcenkc incorporationoffiberreinforcementtoenhancemechanicalpropertiesofbisacrylicresintemporarybridges
AT molinagf incorporationoffiberreinforcementtoenhancemechanicalpropertiesofbisacrylicresintemporarybridges
AT lipcenkc incorporaciondeunrefuerzodefibradevidrioparamejorarlaspropiedadesmecanicasdepuentesprovisoriosderesinabisacrilica
AT molinagf incorporaciondeunrefuerzodefibradevidrioparamejorarlaspropiedadesmecanicasdepuentesprovisoriosderesinabisacrilica
first_indexed 2024-09-03T21:15:18Z
last_indexed 2024-09-03T21:15:18Z
_version_ 1809211057133060096
spelling I10-R335-article-210552018-12-18T12:52:21Z Incorporation of fiber reinforcement to enhance mechanical properties of bisacrylic resin temporary bridges Incorporación de un refuerzo de fibra de vidrio para mejorar las propiedades mecánicas de puentes provisorios de resina bis-acrílica Lipcen, K. C. Molina, G. F. Acrylic Resins Dental Restoration Temporary Dental Materials Resinas Acrílicas Restauración Dental Provisional Materiales Dentales Aim: To evaluate the effect of fiber reinforcement on flexural strength (FS), marginal adaptation (MA) and resistance to fatigue (RF) of bisacrylic resin provisional bridges. Methods: Two metal cores fixed to a metal base at a distance of 10mm of each other reproduced a simulated cast for a three-teeth bridge with an extracted molar. A metal bridge was manufactured for this cast, representing teeth 45, 46 (phantom) and 47. This master-piece was used to obtain a polyether matrix (Impregum Regular, 3M Espe, Seefeld, Germany) for the production of provisional bridges for the three treatment groups using the following materials: A) PMMA; B) Bisacrylic resin (ProTemp 3, 3M Espe, St. Paul, USA); C) Bisacrylic resin + fiber reinforcement (Interlig, Angelus, Brazil). For each test, samples were supported using the metal base as a fixed platform. FS was assessed using a Universal Testing Machine (Digimess MX5000) at a crosshead speed of 1mm/min. FS was expressed in Newtons as the load at fracture of the samples. MA was evaluated as the distance between the distal-cervical margins of the crowns and the shoulder of the metal cores, at three moments of load charge (initial, 500N and 800N). RF was tested using dynamic forces as the number of cycles until fracture using a load charge of 80% of the static maximum force. Mann-Whitney U test (p<0.05) was used for statistical analysis. Results: Mean FS values were 810(80)N, 800(20)N y 990(20)N for groups A, B and C respectively. Bisacrylic resin groups resisted significantly more cycles until fracture than PMMA, being group C the one that resisted the most. Regarding MA test, a great dispersion of values among the three groups was observed. Conclusion: Addition of glass-fibers increased FS and RF of bisacrylic provisional bridges without an effect on MA Objetivo: Determinar la contribución de un refuerzo de fibra de vidrio para mejorar la resistencia flexural (RF) y a la fatiga (RFa) y disminuir la desadaptación marginal (DM) de puentes provisionales confeccionados con resina bisacrílica. Métodos: Se preparó un modelo maestro simulando un puente de tres elementos con un fantoma (45, 46 y 47). Se replicaron mediante matriz de poliéter puentes provisorios para los tres grupos de estudio: A) PMMA; B) Resina Bisacrílica (ProTemp 3, 3M Espe, St. Paul, USA); C) Resina Bisacrílica + refuerzo de fibra (Interlig, Angelus, Brazil). La RF expresada en Newton (N) se evaluó por medio de una máquina universal de ensayos (Digimess MX5000) a 1mm/min hasta la fractura. La distancia entre el borde disto-cervical de las coronas de cada puente provisorio y el hombro de los pilares metálicos del modelo maestro fue considerada como la medida de desadaptación marginal (DM), registrada en tres momentos durante la carga de cada espécimen (inicio, 500N y 800N). La RFa fue evaluada utilizando fuerzas dinámicas en un dispositivo ad-hoc, resultando en el número de ciclos que cada muestra resistía al someterla a una carga del 80% del valor máximo obtenido previamente en el test de RF. El análisis estadístico se realizó a través de la prueba de Mann-Whitney U (p<0.05). Resultados: Los valores de RF fueron 810(80)N, 800(20)N y 990(20)N para los grupos A, B and C respectivamente, con diferencias significativas entre el grupo C y los otros dos. Los grupos B y C resistieron significativamente más cantidad de ciclos que el grupo de PMMA, siendo el grupo C el que obtuvo los valores más altos. En las pruebas de DM los valores se distribuyeron en forma heterogénea. Conclusión: El refuerzo de fibra de vidrio mejora las propiedades mecánicas de puentes provisorios de tres elementos confeccionados con resinas bisacrílicas. Facultad de Odontología 2018-08-31 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf https://revistas.unc.edu.ar/index.php/RevFacOdonto/article/view/21055 Revista de la Facultad de Odontología; Vol. 28 Núm. 2 (2018); 13-19 2545-7594 0325-1071 spa https://revistas.unc.edu.ar/index.php/RevFacOdonto/article/view/21055/20629 10.25014/RevFacOdont27166