Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods

This work provides the physics teacher with theoretical and computational foundations to solve nonlinear equations, very com-mon in solving physical problems. In the present research three physics problems are solved, which are: a sphere floating in water, non-free fall of a parachutist, compression...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Quinga, Santiago
Formato: Artículo revista
Lenguaje:Español
Portugués
Publicado: Asociación de Profesores de Física de la Argentina 2021
Materias:
Acceso en línea:https://revistas.unc.edu.ar/index.php/revistaEF/article/view/36000
Aporte de:
id I10-R316-article-36000
record_format ojs
spelling I10-R316-article-360002023-09-12T16:46:43Z Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods Ecuaciones no lineales en física y su resolución mediante el uso de métodos iterativos multipaso de orden alto Quinga, Santiago Nonlinear equations Iterative multi-step methods Newton Ostrowski’s method Physics Ecuaciones no lineales Métodos iterativos multipaso Newton Métodos de Ostrowski Física This work provides the physics teacher with theoretical and computational foundations to solve nonlinear equations, very com-mon in solving physical problems. In the present research three physics problems are solved, which are: a sphere floating in water, non-free fall of a parachutist, compression of a real spring; making use of principles related to fluids, kinematics and dynamics. Nonlinear equations are obtained which are difficult and, in some cases, impossible to be solved by means of analyti-cal methods. To find an approximate solution to these equations we use iterative methods starting from traditional methods such as Newton, Secant, Steffensen to the introduction of multi-step methods with high order of convergence such as Traub, Ostrowski and methods of order eight designed from Ostrowski's method. Finally, an analysis of the results obtained by applying all these methods to each of the selected physical problems is carried out and, in this way, establish which iterative method is more appropriate in each situation. El presente trabajo proporciona al docente de física fundamentos teóricos y computacionales para resolver ecuaciones no linea-les, muy comunes en la solución de problemas físicos. En el presente trabajo de investigación se resuelven tres problemas de física, los cuales son: una esfera flotando en agua, caída no libre de un paracaidista, compresión de un resorte real; haciendo uso de principios referentes a fluidos, cinemática y dinámica. Se obtienen ecuaciones no lineales difíciles y en algunos casos imposi-bles de ser resueltas mediante métodos analíticos. Para encontrar una solución aproximada a dichas ecuaciones se hace uso de métodos iterativos partiendo desde los métodos tradicionales como son Newton, Secante, Steffensen hasta la introducción de métodos multipaso con alto orden de convergencia como son Traub, Ostrowski y métodos de orden ocho diseñados a partir del método de Ostrowski. Finalmente, se realiza un análisis de los resultados obtenidos al aplicar todos estos métodos a cada uno de los problemas físicos seleccionados y de esta formar establecer qué método iterativo es más adecuado ante cada situación. Asociación de Profesores de Física de la Argentina 2021-12-12 info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion application/pdf text/html https://revistas.unc.edu.ar/index.php/revistaEF/article/view/36000 10.55767/2451.6007.v33.n3.36000 Journal of Physics Teaching; Vol. 33 No. 3 (2021): July - December; 145-165 Revista de Enseñanza de la Física; Vol. 33 Núm. 3 (2021): Julio - Diciembre; 145-165 Revista de Enseñanza de la Física; v. 33 n. 3 (2021): Julho - Dezembro; 145-165 2250-6101 0326-7091 spa por https://revistas.unc.edu.ar/index.php/revistaEF/article/view/36000/36142 https://revistas.unc.edu.ar/index.php/revistaEF/article/view/36000/36143 Derechos de autor 2021 Santiago Quinga http://creativecommons.org/licenses/by-nc-nd/4.0
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-316
container_title_str Revista de Enseñanza de la Física
language Español
Portugués
format Artículo revista
topic Nonlinear equations
Iterative multi-step methods
Newton
Ostrowski’s method
Physics
Ecuaciones no lineales
Métodos iterativos multipaso
Newton
Métodos de Ostrowski
Física
spellingShingle Nonlinear equations
Iterative multi-step methods
Newton
Ostrowski’s method
Physics
Ecuaciones no lineales
Métodos iterativos multipaso
Newton
Métodos de Ostrowski
Física
Quinga, Santiago
Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
topic_facet Nonlinear equations
Iterative multi-step methods
Newton
Ostrowski’s method
Physics
Ecuaciones no lineales
Métodos iterativos multipaso
Newton
Métodos de Ostrowski
Física
author Quinga, Santiago
author_facet Quinga, Santiago
author_sort Quinga, Santiago
title Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
title_short Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
title_full Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
title_fullStr Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
title_full_unstemmed Nonlinear equations in Physics, and their resolution using high order multi-step iterative methods
title_sort nonlinear equations in physics, and their resolution using high order multi-step iterative methods
description This work provides the physics teacher with theoretical and computational foundations to solve nonlinear equations, very com-mon in solving physical problems. In the present research three physics problems are solved, which are: a sphere floating in water, non-free fall of a parachutist, compression of a real spring; making use of principles related to fluids, kinematics and dynamics. Nonlinear equations are obtained which are difficult and, in some cases, impossible to be solved by means of analyti-cal methods. To find an approximate solution to these equations we use iterative methods starting from traditional methods such as Newton, Secant, Steffensen to the introduction of multi-step methods with high order of convergence such as Traub, Ostrowski and methods of order eight designed from Ostrowski's method. Finally, an analysis of the results obtained by applying all these methods to each of the selected physical problems is carried out and, in this way, establish which iterative method is more appropriate in each situation.
publisher Asociación de Profesores de Física de la Argentina
publishDate 2021
url https://revistas.unc.edu.ar/index.php/revistaEF/article/view/36000
work_keys_str_mv AT quingasantiago nonlinearequationsinphysicsandtheirresolutionusinghighordermultistepiterativemethods
AT quingasantiago ecuacionesnolinealesenfisicaysuresolucionmedianteelusodemetodositerativosmultipasodeordenalto
first_indexed 2024-09-03T20:40:41Z
last_indexed 2024-09-03T20:40:41Z
_version_ 1809208879181987840