Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection

We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Ivana Carola, Briozzo, Carlos Bruno
Formato: article
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:http://hdl.handle.net/11086/22156
http://dx.doi.org/10.4279/PIP.070015
Aporte de:Repositorio Digital Universitario (UNC) de Universidad Nacional de Córdoba Ver origen
id I10-R14111086-22156
record_format dspace
spelling I10-R14111086-221562022-03-31T14:02:26Z Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection Ramos, Ivana Carola Briozzo, Carlos Bruno Rayleigh-Bénard convection Pseudospectral method We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R ∼ 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still. publishedVersion Fil: Ramos, Ivana Carola. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Fil: Briozzo, Carlos Bruno. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina. Física de los Fluidos y Plasma 2022-01-13T16:55:26Z 2022-01-13T16:55:26Z 2015 article Ramos, I. C. y Briozzo, C. B. (2015). Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection. Papers in Physics, 7, 070015. http://dx.doi.org/10.4279/PIP.070015 http://hdl.handle.net/11086/22156 http://dx.doi.org/10.4279/PIP.070015 eng Attribution 3.0 Unported (CC BY 3.0) http://creativecommons.org/licenses/by/3.0/ Electrónico y/o Digital eISSN: 1852-4249
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-141
collection Repositorio Digital Universitario (UNC)
language Inglés
topic Rayleigh-Bénard convection
Pseudospectral method
spellingShingle Rayleigh-Bénard convection
Pseudospectral method
Ramos, Ivana Carola
Briozzo, Carlos Bruno
Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
topic_facet Rayleigh-Bénard convection
Pseudospectral method
description We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R ∼ 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still.
format article
author Ramos, Ivana Carola
Briozzo, Carlos Bruno
author_facet Ramos, Ivana Carola
Briozzo, Carlos Bruno
author_sort Ramos, Ivana Carola
title Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
title_short Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
title_full Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
title_fullStr Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
title_full_unstemmed Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection
title_sort adapting a fourier pseudospectral method to dirichlet boundary conditions for rayleigh–bénard convection
publishDate 2022
url http://hdl.handle.net/11086/22156
http://dx.doi.org/10.4279/PIP.070015
work_keys_str_mv AT ramosivanacarola adaptingafourierpseudospectralmethodtodirichletboundaryconditionsforrayleighbenardconvection
AT briozzocarlosbruno adaptingafourierpseudospectralmethodtodirichletboundaryconditionsforrayleighbenardconvection
_version_ 1737484612542660608