Adapting a Fourier pseudospectral method to Dirichlet boundary conditions for Rayleigh–Bénard convection

We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet...

Descripción completa

Detalles Bibliográficos
Autores principales: Ramos, Ivana Carola, Briozzo, Carlos Bruno
Formato: article
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:http://hdl.handle.net/11086/22156
http://dx.doi.org/10.4279/PIP.070015
Aporte de:Repositorio Digital Universitario (UNC) de Universidad Nacional de Córdoba Ver origen
Descripción
Sumario:We present the adaptation to non–free boundary conditions of a pseudospectral method based on the (complex) Fourier transform. The method is applied to the numerical integration of the Oberbeck–Boussinesq equations in a Rayleigh–Bénard cell with no-slip boundary conditions for velocity and Dirichlet boundary conditions for temperature. We show the first results of a 2D numerical simulation of dry air convection at high Rayleigh number (R ∼ 10^9). These results are the basis for the later study, by the same method, of wet convection in a solar still.