Geometric formulation of the uncertainty principle

A geometric approach to formulate the uncertainty principle between quantum observables acting on an N-dimensional Hilbert space is proposed. We consider the fidelity between a density operator associated with a quantum system and a projector associated with an observable, and interpret it as the pr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bosyk, Gustavo Martín, Osán, Tristán Martín, Lamberti, Pedro Walter, Portesi, Mariela
Formato: article
Lenguaje:Inglés
Publicado: 2021
Materias:
Acceso en línea:http://hdl.handle.net/11086/20836
https://doi.org/10.1103/PhysRevA.89.034101
Aporte de:
id I10-R14111086-20836
record_format dspace
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-141
collection Repositorio Digital Universitario (UNC)
language Inglés
topic Uncertainty principle
Landau-Pollak inequality
Fidelity-based metrics
Quantum distances
spellingShingle Uncertainty principle
Landau-Pollak inequality
Fidelity-based metrics
Quantum distances
Bosyk, Gustavo Martín
Osán, Tristán Martín
Lamberti, Pedro Walter
Portesi, Mariela
Geometric formulation of the uncertainty principle
topic_facet Uncertainty principle
Landau-Pollak inequality
Fidelity-based metrics
Quantum distances
description A geometric approach to formulate the uncertainty principle between quantum observables acting on an N-dimensional Hilbert space is proposed. We consider the fidelity between a density operator associated with a quantum system and a projector associated with an observable, and interpret it as the probability of obtaining the outcome corresponding to that projector. We make use of fidelity-based metrics such as angle, Bures, and root infidelity to propose a measure of uncertainty. The triangle inequality allows us to derive a family of uncertainty relations. In the case of the angle metric, we recover the Landau-Pollak inequality for pure states and show, in a natural way, how to extend it to the case of mixed states in arbitrary dimension. In addition, we derive and compare alternative uncertainty relations when using other known fidelity-based metrics.
format article
author Bosyk, Gustavo Martín
Osán, Tristán Martín
Lamberti, Pedro Walter
Portesi, Mariela
author_facet Bosyk, Gustavo Martín
Osán, Tristán Martín
Lamberti, Pedro Walter
Portesi, Mariela
author_sort Bosyk, Gustavo Martín
title Geometric formulation of the uncertainty principle
title_short Geometric formulation of the uncertainty principle
title_full Geometric formulation of the uncertainty principle
title_fullStr Geometric formulation of the uncertainty principle
title_full_unstemmed Geometric formulation of the uncertainty principle
title_sort geometric formulation of the uncertainty principle
publishDate 2021
url http://hdl.handle.net/11086/20836
https://doi.org/10.1103/PhysRevA.89.034101
work_keys_str_mv AT bosykgustavomartin geometricformulationoftheuncertaintyprinciple
AT osantristanmartin geometricformulationoftheuncertaintyprinciple
AT lambertipedrowalter geometricformulationoftheuncertaintyprinciple
AT portesimariela geometricformulationoftheuncertaintyprinciple
bdutipo_str Repositorios
_version_ 1764820394692313090