On predicting wind power series by using BEA modified neural networks-based approach
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina.
Guardado en:
| Autores principales: | Rodriguez Rivero, Cristian, Pucheta, Julian, Túpac, Yván, Laboret, Sergio, Gorrostieta, Efren, Otaño, Paula |
|---|---|
| Formato: | conferenceObject |
| Lenguaje: | Inglés |
| Publicado: |
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/555243 |
| Aporte de: |
Ejemplares similares
-
Bayesian enhanced modified forecasting approach: application to wind power series
por: Rodríguez Rivero, Cristian, et al.
Publicado: (2024) -
Forecasting noisy time series approximated by neural networks
por: Rodríguez Rivero, Cristian, et al.
Publicado: (2023) -
Analysis of a gaussian process and feed-forward neural networks based filter for forecasting short rainfall time series
por: Rodriguez Rivero, C., et al.
Publicado: (2022) -
Long-term power consumption demand prediction: a comparison of energy associated and bayesian modeling approach
por: Rodriguez Rivero, Cristian, et al.
Publicado: (2024) -
A combined approach for long-term series prediction: Renyi permutation entropy with BEA predictor filter
por: Rodriguez Rivero, Cristian, et al.
Publicado: (2024)