On predicting wind power series by using BEA modified neural networks-based approach
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina.
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | conferenceObject |
| Lenguaje: | Inglés |
| Publicado: |
2025
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/555243 |
| Aporte de: |
| id |
I10-R141-11086-555243 |
|---|---|
| record_format |
dspace |
| spelling |
I10-R141-11086-5552432025-03-25T13:52:16Z On predicting wind power series by using BEA modified neural networks-based approach Rodriguez Rivero, Cristian Pucheta, Julian Túpac, Yván Laboret, Sergio Gorrostieta, Efren Otaño, Paula Time series forecasting Ingeniería Electrónica BEAmod Ingeniería en Computación Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Pucheta, Julian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Túpac, Yván. Universidad Católica San Pablo Arequipa. Escuela de Ciencias de la Computación; Perú. Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Gorrostieta, Efren. Universidad Autónoma de Querétaro. Laboratorio de Mecatrónica; Argentina. Fil: Otaño, Paula. Universidad Nacional de Córdoba. Departamento de Ingeniería en Sistema; Argentina. In this paper, wind power series prediction using BEA modified (BEAmod.) neural networks-based approach is presented. Wind power forecasting is a complex, multidimensional, and highly non-linear system. Neural network is able to learn the relationship between system inputs and outputs without mathematical conversion, and perform complex nonlinear mapping, data classification, prediction, and is also suitable for wind power forecasting. The purpose of this paper is to use neural network to design a wind power forecasting system. The focus, with particularly interest in short-term prediction, is by using the data model selected, in which the Bayesian enhanced modified approach (BEAmod.) is used to extract information to make prediction. The efficiency analysis of the proposed forecasting method is examined through the underlying dynamical system, in which the nonlinear and temporal dependencies span long time intervals (long memory process). The conducted results show that this method can be used to improve the predictability of short-term wind time series with a suitable number of hidden units compared to that of reported in the literature. Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Pucheta, Julian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Túpac, Yván. Universidad Católica San Pablo Arequipa. Escuela de Ciencias de la Computación; Perú. Fil: Laboret, Sergio. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. Fil: Gorrostieta, Efren. Universidad Autónoma de Querétaro. Laboratorio de Mecatrónica; Argentina. Fil: Otaño, Paula. Universidad Nacional de Córdoba. Departamento de Ingeniería en Sistema; Argentina. Sistemas de Automatización y Control 2025-03-25T13:51:01Z 2025-03-25T13:51:01Z 2017 conferenceObject 978-987-544-754-7 http://hdl.handle.net/11086/555243 eng Attribution-NonCommercial-ShareAlike 4.0 International http://creativecommons.org/licenses/by-nc-sa/4.0/ Impreso |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Time series forecasting Ingeniería Electrónica BEAmod Ingeniería en Computación |
| spellingShingle |
Time series forecasting Ingeniería Electrónica BEAmod Ingeniería en Computación Rodriguez Rivero, Cristian Pucheta, Julian Túpac, Yván Laboret, Sergio Gorrostieta, Efren Otaño, Paula On predicting wind power series by using BEA modified neural networks-based approach |
| topic_facet |
Time series forecasting Ingeniería Electrónica BEAmod Ingeniería en Computación |
| description |
Fil: Rodriguez Rivero, Cristian. Universidad Nacional de Córdoba. Departamento de ingeniería electrónica; Argentina. |
| format |
conferenceObject |
| author |
Rodriguez Rivero, Cristian Pucheta, Julian Túpac, Yván Laboret, Sergio Gorrostieta, Efren Otaño, Paula |
| author_facet |
Rodriguez Rivero, Cristian Pucheta, Julian Túpac, Yván Laboret, Sergio Gorrostieta, Efren Otaño, Paula |
| author_sort |
Rodriguez Rivero, Cristian |
| title |
On predicting wind power series by using BEA modified neural networks-based approach |
| title_short |
On predicting wind power series by using BEA modified neural networks-based approach |
| title_full |
On predicting wind power series by using BEA modified neural networks-based approach |
| title_fullStr |
On predicting wind power series by using BEA modified neural networks-based approach |
| title_full_unstemmed |
On predicting wind power series by using BEA modified neural networks-based approach |
| title_sort |
on predicting wind power series by using bea modified neural networks-based approach |
| publishDate |
2025 |
| url |
http://hdl.handle.net/11086/555243 |
| work_keys_str_mv |
AT rodriguezriverocristian onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach AT puchetajulian onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach AT tupacyvan onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach AT laboretsergio onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach AT gorrostietaefren onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach AT otanopaula onpredictingwindpowerseriesbyusingbeamodifiedneuralnetworksbasedapproach |
| _version_ |
1827722702036664320 |