Matrix-valued Gegenbauer-type polynomials
Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands.
Autores principales: | , , |
---|---|
Otros Autores: | |
Formato: | publishedVersion article |
Lenguaje: | Inglés |
Publicado: |
2025
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/11086/555133 https://doi.org/10.1007/s00365-017-9384-4 |
Aporte de: |
id |
I10-R141-11086-555133 |
---|---|
record_format |
dspace |
spelling |
I10-R141-11086-5551332025-03-14T12:06:58Z Matrix-valued Gegenbauer-type polynomials Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel https://orcid.org/0000-0002-2791-385X Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization info:eu-repo/semantics/publishedVersion Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. We introduce matrix-valued weight functions of arbitrary size, which are analogues of the weight function for the Gegenbauer or ultraspherical polynomials for the parameter ν > 0. The LDU-decomposition of the weight is explicitly given in terms of Gegenbauer polynomials. We establish a matrix-valued Pearson equation for these matrix weights leading to explicit shift operators relating the weights for parameters ν and ν + 1. The matrix coefficients of the Pearson equation are obtained using a special matrix-valued differential operator in a commutative algebra of symmetric differential operators. The corresponding orthogonal polynomials are the matrix-valued Gegenbauer-type polynomials which are eigenfunctions of the symmetric matrix-valued differential operators. Using the shift operators, we find the squared norm, and we establish a simple Rodrigues formula. The three-term recurrence relation is obtained explicitly using the shift operators as well. We give an explicit nontrivial expression for the matrix entries of the matrix-valued Gegenbauer-type polynomials in terms of scalar-valued Gegenbauer and Racah polynomials using the LDU-decomposition and differential operators. The case ν = 1 reduces to the case of matrix-valued Chebyshev polynomials previously obtained using group theoretic considerations. info:eu-repo/semantics/publishedVersion Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. Fil: De los Ríos, Ana M. Universidad de Sevilla. Facultad de Matemáticas. Departamento de Análisis Matemático; España. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Román, Pablo Manuel. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Román, Pablo Manuel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Matemática Pura 2025-03-13T15:08:08Z 2025-03-13T15:08:08Z 2017 article Koelink, E., De los Ríos, A. M. y Román, P. M. (2017). Matrix-valued Gegenbauer-type polynomials. Constructive Approximation, 46 (3), 459-487. https://doi.org/10.1007/s00365-017-9384-4 0176-4276 http://hdl.handle.net/11086/555133 1432-0940 https://doi.org/10.1007/s00365-017-9384-4 eng Attribution 4.0 International http://creativecommons.org/licenses/by/4.0/ Impreso; Electrónico y/o Digital |
institution |
Universidad Nacional de Córdoba |
institution_str |
I-10 |
repository_str |
R-141 |
collection |
Repositorio Digital Universitario (UNC) |
language |
Inglés |
topic |
Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization |
spellingShingle |
Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel Matrix-valued Gegenbauer-type polynomials |
topic_facet |
Matrix-valued orthogonal polynomials Matrix-valued differential operators Gegenbauer polynomials Shift operator Darboux factorization |
description |
Fil: Koelink, Erik. Radboud Universiteit. Institute for Mathematics, Astrophysics and Particle Physics; Netherlands. |
author2 |
https://orcid.org/0000-0002-2791-385X |
author_facet |
https://orcid.org/0000-0002-2791-385X Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel |
format |
publishedVersion article |
author |
Koelink, Erik De los Ríos, Ana M. Román, Pablo Manuel |
author_sort |
Koelink, Erik |
title |
Matrix-valued Gegenbauer-type polynomials |
title_short |
Matrix-valued Gegenbauer-type polynomials |
title_full |
Matrix-valued Gegenbauer-type polynomials |
title_fullStr |
Matrix-valued Gegenbauer-type polynomials |
title_full_unstemmed |
Matrix-valued Gegenbauer-type polynomials |
title_sort |
matrix-valued gegenbauer-type polynomials |
publishDate |
2025 |
url |
http://hdl.handle.net/11086/555133 https://doi.org/10.1007/s00365-017-9384-4 |
work_keys_str_mv |
AT koelinkerik matrixvaluedgegenbauertypepolynomials AT delosriosanam matrixvaluedgegenbauertypepolynomials AT romanpablomanuel matrixvaluedgegenbauertypepolynomials |
_version_ |
1827088590416379904 |