Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström

Artículo finalmente publicado en: Fernández Tío, J. M. y Dotti, G. D. (2017). Black hole nonmodal linear stability under odd perturbations: the Reissner-Nordström case. Physical Review D, 95 (12), 124041. https://doi.org/10.1103/PhysRevD.95.124041

Guardado en:
Detalles Bibliográficos
Autores principales: Fernández Tío, Julián María, Dotti, Gustavo Daniel
Otros Autores: https://orcid.org/0000-0003-1490-7167
Formato: article
Lenguaje:Inglés
Publicado: 2024
Materias:
Acceso en línea:http://hdl.handle.net/11086/553876
https://doi.org/10.48550/arXiv.1607.00975
Aporte de:
id I10-R141-11086-553876
record_format dspace
spelling I10-R141-11086-5538762024-10-08T13:33:59Z Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström Fernández Tío, Julián María Dotti, Gustavo Daniel https://orcid.org/0000-0003-1490-7167 Black holes Linear stability Non modal stability Artículo finalmente publicado en: Fernández Tío, J. M. y Dotti, G. D. (2017). Black hole nonmodal linear stability under odd perturbations: the Reissner-Nordström case. Physical Review D, 95 (12), 124041. https://doi.org/10.1103/PhysRevD.95.124041 info:eu-repo/semantics/submittedVersion Fil: Fernández Tío, Julián María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Fernández Tío, Julián María. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Fil: Fernández Tío, Julián María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina. Fil: Dotti, Gustavo Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Dotti, Gustavo Daniel. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina. Following a program on black hole nonmodal linear stability initiated in Phys. Rev. Lett. 112 (2014) 191101, we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström (A)dS black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F = δ(F∗ αβ F αβ ) and Q = δ( 1/ 48 C∗ αβγδ Cαβγδ ), where Cαβγδ is the Weyl tensor, Fαβ the Maxwell field, a star denotes Hodge dual and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q. For nonnegative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically AdS case the dynamics depends on the boundary condition at the conformal timelike boundary and there are instabilities if Robin boundary conditions are chosen. http://link.aps.org/doi/10.1103/PhysRevD.95.124041 info:eu-repo/semantics/submittedVersion Fil: Fernández Tío, Julián María. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Fernández Tío, Julián María. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Fil: Fernández Tío, Julián María. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina. Fil: Dotti, Gustavo Daniel. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Dotti, Gustavo Daniel. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina. Fil: Dotti, Gustavo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Física Enrique Gaviola; Argentina. Física de Partículas y Campos 2024-10-08T13:19:49Z 2024-10-08T13:19:49Z 2017 article 2470-0010 http://hdl.handle.net/11086/553876 2470-0029 https://doi.org/10.48550/arXiv.1607.00975 eng De la versión publicada: https://doi.org/10.1103/PhysRevD.95.124041 Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es Impreso; Electrónico y/o Digital
institution Universidad Nacional de Córdoba
institution_str I-10
repository_str R-141
collection Repositorio Digital Universitario (UNC)
language Inglés
topic Black holes
Linear stability
Non modal stability
spellingShingle Black holes
Linear stability
Non modal stability
Fernández Tío, Julián María
Dotti, Gustavo Daniel
Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
topic_facet Black holes
Linear stability
Non modal stability
description Artículo finalmente publicado en: Fernández Tío, J. M. y Dotti, G. D. (2017). Black hole nonmodal linear stability under odd perturbations: the Reissner-Nordström case. Physical Review D, 95 (12), 124041. https://doi.org/10.1103/PhysRevD.95.124041
author2 https://orcid.org/0000-0003-1490-7167
author_facet https://orcid.org/0000-0003-1490-7167
Fernández Tío, Julián María
Dotti, Gustavo Daniel
format submittedVersion
article
author Fernández Tío, Julián María
Dotti, Gustavo Daniel
author_sort Fernández Tío, Julián María
title Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
title_short Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
title_full Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
title_fullStr Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
title_full_unstemmed Black hole nonmodal linear stability : odd perturbations of Reissner-Nordström
title_sort black hole nonmodal linear stability : odd perturbations of reissner-nordström
publishDate 2024
url http://hdl.handle.net/11086/553876
https://doi.org/10.48550/arXiv.1607.00975
work_keys_str_mv AT fernandeztiojulianmaria blackholenonmodallinearstabilityoddperturbationsofreissnernordstrom
AT dottigustavodaniel blackholenonmodallinearstabilityoddperturbationsofreissnernordstrom
_version_ 1824552250939277312