On the symplectic curvature flow for locally homogeneous manifolds
Artículo finalmente publicado en: Lauret, J. y Will, C. (2017). On the symplectic curvature flow for locally homogeneous manifolds. Journal of Symplectic Geometry, 15 (1), 1-49. https://dx.doi.org/10.4310/JSG.2017.v15.n1.a1
Autores principales: | , |
---|---|
Otros Autores: | |
Formato: | submittedVersion article |
Lenguaje: | Inglés |
Publicado: |
2024
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/11086/553510 https://doi.org/10.48550/arXiv.1405.6065 |
Aporte de: |
id |
I10-R141-11086-553510 |
---|---|
record_format |
dspace |
spelling |
I10-R141-11086-5535102024-09-17T12:12:56Z On the symplectic curvature flow for locally homogeneous manifolds Lauret, Jorge Rubén Will, Cynthia Eugenia https://orcid.org/0000-0002-9022-2285 https://orcid.org/0000-0002-1235-8750 Symplectic geometry Curvature flow Artículo finalmente publicado en: Lauret, J. y Will, C. (2017). On the symplectic curvature flow for locally homogeneous manifolds. Journal of Symplectic Geometry, 15 (1), 1-49. https://dx.doi.org/10.4310/JSG.2017.v15.n1.a1 info:eu-repo/semantics/submittedVersion Fil: Lauret, Jorge Rubén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Lauret, Jorge Rubén. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Lauret, Jorge Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Will, Cynthia Eugenia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Will, Cynthia Eugenia. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Recently, J. Streets and G. Tian introduced a natural way to evolve an almost-Kähler manifold called the symplectic curvature flow, in which the metric, the symplectic structure and the almost-complex structure are all evolving. We study in this paper different aspects of the flow on locally homogeneous manifolds, including long-time existence, solitons, regularity and convergence. We develop in detail two large classes of Lie groups, which are relatively simple from a structural point of view but yet geometrically rich and exotic: solvable Lie groups with a codimension one abelian normal subgroup and a construction attached to each left symmetric algebra. As an application, we exhibit a soliton structure on most of symplectic surfaces which are Lie groups. A family of ancient solutions which develop a finite time singularity was found; neither their Chern scalar nor their scalar curvature are monotone along the flow and they converge in the pointed sense to a (non-Kähler) shrinking soliton solution on the same Lie group. This research was partially supported by grants from CONICET, FONCYT and SeCyT (Universidad Nacional de Córdoba). info:eu-repo/semantics/submittedVersion Fil: Lauret, Jorge Rubén. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Lauret, Jorge Rubén. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Lauret, Jorge Rubén. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Will, Cynthia Eugenia. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física y Computación; Argentina. Fil: Will, Cynthia Eugenia. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina. Fil: Will, Cynthia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Estudios de Matemática; Argentina. Matemática Pura 2024-09-05T12:46:53Z 2024-09-05T12:46:53Z 2017 article 1527-5256 http://hdl.handle.net/11086/553510 1540-2347 https://doi.org/10.48550/arXiv.1405.6065 eng De la versión publicada: https://dx.doi.org/10.4310/JSG.2017.v15.n1.a1 Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es |
institution |
Universidad Nacional de Córdoba |
institution_str |
I-10 |
repository_str |
R-141 |
collection |
Repositorio Digital Universitario (UNC) |
language |
Inglés |
topic |
Symplectic geometry Curvature flow |
spellingShingle |
Symplectic geometry Curvature flow Lauret, Jorge Rubén Will, Cynthia Eugenia On the symplectic curvature flow for locally homogeneous manifolds |
topic_facet |
Symplectic geometry Curvature flow |
description |
Artículo finalmente publicado en: Lauret, J. y Will, C. (2017). On the symplectic curvature flow for locally homogeneous manifolds. Journal of Symplectic Geometry, 15 (1), 1-49. https://dx.doi.org/10.4310/JSG.2017.v15.n1.a1 |
author2 |
https://orcid.org/0000-0002-9022-2285 |
author_facet |
https://orcid.org/0000-0002-9022-2285 Lauret, Jorge Rubén Will, Cynthia Eugenia |
format |
submittedVersion article |
author |
Lauret, Jorge Rubén Will, Cynthia Eugenia |
author_sort |
Lauret, Jorge Rubén |
title |
On the symplectic curvature flow for locally homogeneous manifolds |
title_short |
On the symplectic curvature flow for locally homogeneous manifolds |
title_full |
On the symplectic curvature flow for locally homogeneous manifolds |
title_fullStr |
On the symplectic curvature flow for locally homogeneous manifolds |
title_full_unstemmed |
On the symplectic curvature flow for locally homogeneous manifolds |
title_sort |
on the symplectic curvature flow for locally homogeneous manifolds |
publishDate |
2024 |
url |
http://hdl.handle.net/11086/553510 https://doi.org/10.48550/arXiv.1405.6065 |
work_keys_str_mv |
AT lauretjorgeruben onthesymplecticcurvatureflowforlocallyhomogeneousmanifolds AT willcynthiaeugenia onthesymplecticcurvatureflowforlocallyhomogeneousmanifolds |
_version_ |
1824552387223748608 |