SAnDReS 2.0: Development of machine-learning models to explore the scoring function space
Factor de Impacto 2023: 3.4
Guardado en:
| Autores principales: | , , , , , , , , , , , , |
|---|---|
| Otros Autores: | |
| Formato: | publishedVersion article |
| Lenguaje: | Inglés |
| Publicado: |
2024
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/552524 https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449 https://pubmed.ncbi.nlm.nih.gov/38900052/ |
| Aporte de: |
| id |
I10-R141-11086-552524 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space |
| spellingShingle |
Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| topic_facet |
Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space |
| description |
Factor de Impacto 2023: 3.4 |
| author2 |
https://orcid.org/0000-0001-8640-357X |
| author_facet |
https://orcid.org/0000-0001-8640-357X de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine |
| format |
publishedVersion article |
| author |
de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine |
| author_sort |
de Azevedo, Walter Filgueira Jr. |
| title |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| title_short |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| title_full |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| title_fullStr |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| title_full_unstemmed |
SAnDReS 2.0: Development of machine-learning models to explore the scoring function space |
| title_sort |
sandres 2.0: development of machine-learning models to explore the scoring function space |
| publishDate |
2024 |
| url |
http://hdl.handle.net/11086/552524 https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449 https://pubmed.ncbi.nlm.nih.gov/38900052/ |
| work_keys_str_mv |
AT deazevedowalterfilgueirajr sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT rodrigoquiroga sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT villarrealmarcosariel sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT freitasdasilveiranelsonjose sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT bitencourtferreiragabriela sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT duartedasilvaamauri sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT veitacostamartina sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT rufinooliveirapatricia sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT tutonemarco sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT biziukovanadezhda sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT poroikovvladimir sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT tarasovaolga sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace AT baudstephaine sandres20developmentofmachinelearningmodelstoexplorethescoringfunctionspace |
| _version_ |
1806948418901245952 |
| spelling |
I10-R141-11086-5525242024-07-03T06:24:03Z SAnDReS 2.0: Development of machine-learning models to explore the scoring function space de Azevedo, Walter Filgueira Jr. Rodrigo, Quiroga Villarreal, Marcos Ariel Freitas da Silveira, Nelson José Bitencourt-Ferreira, Gabriela Duarte da Silva, Amauri Veit-Acosta, Martina Rufino Oliveira, Patricia Tutone, Marco Biziukova, Nadezhda Poroikov, Vladimir Tarasova, Olga Baud, Stéphaine https://orcid.org/0000-0001-8640-357X https://orcid.org/0000-0001-5015-0531 https://orcid.org/0000-0001-8223-5193 https://orcid.org/0000-0001-9257-7322 https://orcid.org/0000-0002-3120-8256 https://orcid.org/0000-0001-6395-458X https://orcid.org/0000-0002-9203-3314 https://orcid.org/0000-0002-1850-6670 https://orcid.org/0000-0001-5059-8686 https://orcid.org/0000-0002-2044-1327 https://orcid.org/0000-0001-7937-2621 https://orcid.org/0000-0002-3723-7832 Binding affinity Crystal structure Machine learning Protein–ligand interactions Scoring function space Factor de Impacto 2023: 3.4 info:eu-repo/semantics/publishedVersion Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil. Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina. Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil. Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil. Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil. Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA. Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil. Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France. Classical scoring functions may exhibit low accuracy in determining ligand binding affinity for proteins. The availability of both protein-ligand structures and affinity data make it possible to develop machine-learning models focused on specific protein systems with superior predictive performance. Here, we report a new methodology named SAnDReS that combines AutoDock Vina 1.2 with 54 regression methods available in Scikit-Learn to calculate binding affinity based on protein-ligand structures. This approach allows exploration of the scoring function space. SAnDReS generates machine-learning models based on crystal, docked, and AlphaFold-generated structures. As a proof of concept, we examine the performance of SAnDReS-generated models in three case studies. For all three cases, our models outperformed classical scoring functions. Also, SAnDReS-generated models showed predictive performance close to or better than other machine-learning models such as KDEEP, CSM-lig, and ΔVinaRF20. SAnDReS 2.0 is available to download at https://github.com/azevedolab/sandres. info:eu-repo/semantics/publishedVersion Fil: de Azevedo, Walter Filgueira Jr. Federal University of Alfenas. Institute of Exact Sciences. Department of Physics, Brazil. Fil: Rodrigo, Quiroga. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Rodrigo, Quiroga. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina. Fil: Villarreal, Marcos Ariel. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Teórica y Computacional, Argentina. Fil: Villarreal, Marcos Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones en Fisicoquímica de Córdoba, Argentina Fil: Freitas da Silveira, Nelson José. Federal University of Alfenas. Laboratory of Molecular Modeling and Computer Simulation, Brazil. Fil: Bitencourt-Ferreira, Gabriela. Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil. Fil: Duarte da Silva, Amauri. Universidade Federal de Ciências da Saúde de Porto Alegre. Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde, Brazil. Fil: Veit-Acosta, Martina. Western Michigan University. Michigan, USA. Fil: Rufino Oliveira, Patricia. University of São Paulo. School of Arts, Sciences and Humanities, Brazil. Fil: Tutone, Marco. Università di Palermo. Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche, Italy. Fil: Biziukova, Nadezhda. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Poroikov, Vladimir. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Tarasova, Olga. Institute of Biomedical Chemistry, Moscow, Russia. Fil: Baud, Stéphaine. Université de Reims Champagne-Ardenne. Laboratoire SiRMa, UMR CNRS/URCA 7369, UFR Sciences Exactes et Naturelles, Reims, France. 2024-07-02T22:32:18Z 2024-07-02T22:32:18Z 2024-06-20 article de Azevedo Jr, W. F., Quiroga, R., Villarreal, M. A., da Silveira, N. J. F., Bitencourt‐Ferreira, G., da Silva, A. D., ... & Baud, S. SAnDReS 2.0: Development of machine‐learning models to explore the scoring function space. Journal of Computational Chemistry. http://hdl.handle.net/11086/552524 1096-987X https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.27449 https://pubmed.ncbi.nlm.nih.gov/38900052/ DOI: 10.1002/jcc.27449 eng Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |