Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2

We classify integral modular categories of dimension pq4 and p2q2, where p and q are distinct primes. We show that such categories are always group-theoretical, except for categories of dimension 4q2. In these cases there are well-known examples of non-group-theoretical categories, coming from cente...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bruillard, Paul, Galindo Martínez, César Neyit, Hong, Seung-Moon, Kashina, Yevgenia, Naidu, Deepak, Natale, Sonia Luján, Plavnik, Julia Yael, Rowell, Eric C.
Formato: article
Lenguaje:Inglés
Publicado: 2022
Materias:
Acceso en línea:http://hdl.handle.net/11086/29853
https://doi.org/10.48550/arXiv.1303.4748
Aporte de:
Descripción
Sumario:We classify integral modular categories of dimension pq4 and p2q2, where p and q are distinct primes. We show that such categories are always group-theoretical, except for categories of dimension 4q2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara–Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q2 is either equivalent to one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group.