Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2
We classify integral modular categories of dimension pq4 and p2q2, where p and q are distinct primes. We show that such categories are always group-theoretical, except for categories of dimension 4q2. In these cases there are well-known examples of non-group-theoretical categories, coming from cente...
Guardado en:
| Autores principales: | , , , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/29853 https://doi.org/10.48550/arXiv.1303.4748 |
| Aporte de: |
| id |
I10-R141-11086-29853 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Modular categories Fusion categories Frobenius–Perron dimension Group-theoretical |
| spellingShingle |
Modular categories Fusion categories Frobenius–Perron dimension Group-theoretical Bruillard, Paul Galindo Martínez, César Neyit Hong, Seung-Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Luján Plavnik, Julia Yael Rowell, Eric C. Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| topic_facet |
Modular categories Fusion categories Frobenius–Perron dimension Group-theoretical |
| description |
We classify integral modular categories of dimension pq4 and p2q2, where p and q are distinct primes. We show that such categories are always group-theoretical, except for categories of dimension 4q2. In these cases there are well-known examples of non-group-theoretical categories, coming from centers of Tambara–Yamagami categories and quantum groups. We show that a non-group-theoretical integral modular category of dimension 4q2 is either equivalent to one of these well-known examples or is of dimension 36 and is twist-equivalent to fusion categories arising from a certain quantum group. |
| format |
article |
| author |
Bruillard, Paul Galindo Martínez, César Neyit Hong, Seung-Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Luján Plavnik, Julia Yael Rowell, Eric C. |
| author_facet |
Bruillard, Paul Galindo Martínez, César Neyit Hong, Seung-Moon Kashina, Yevgenia Naidu, Deepak Natale, Sonia Luján Plavnik, Julia Yael Rowell, Eric C. |
| author_sort |
Bruillard, Paul |
| title |
Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| title_short |
Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| title_full |
Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| title_fullStr |
Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| title_full_unstemmed |
Classification of integral modular categories of Frobenius–Perron dimension pq4 and p2q2 |
| title_sort |
classification of integral modular categories of frobenius–perron dimension pq4 and p2q2 |
| publishDate |
2022 |
| url |
http://hdl.handle.net/11086/29853 https://doi.org/10.48550/arXiv.1303.4748 |
| work_keys_str_mv |
AT bruillardpaul classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT galindomartinezcesarneyit classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT hongseungmoon classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT kashinayevgenia classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT naidudeepak classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT natalesonialujan classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT plavnikjuliayael classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 AT rowellericc classificationofintegralmodularcategoriesoffrobeniusperrondimensionpq4andp2q2 |
| bdutipo_str |
Repositorios |
| _version_ |
1764820392775516160 |