Conjugacy classes of p-cycles of type D in alternating groups
We classify the conjugacy classes of $p$-cycles of type D in alternating groups. This finishes the open cases in [AFGV]. Also we determine all the subracks of those conjugacy classes which are not of type D.
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/25562 |
| Aporte de: |
| id |
I10-R141-11086-25562 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Pointed Hopf algebras Nichols algebras Racks |
| spellingShingle |
Pointed Hopf algebras Nichols algebras Racks Fantino, Fernando Amado Conjugacy classes of p-cycles of type D in alternating groups |
| topic_facet |
Pointed Hopf algebras Nichols algebras Racks |
| description |
We classify the conjugacy classes of $p$-cycles of type D in alternating groups. This finishes the open cases in [AFGV]. Also we determine all the subracks of those conjugacy classes which are not of type D. |
| format |
article |
| author |
Fantino, Fernando Amado |
| author_facet |
Fantino, Fernando Amado |
| author_sort |
Fantino, Fernando Amado |
| title |
Conjugacy classes of p-cycles of type D in alternating groups |
| title_short |
Conjugacy classes of p-cycles of type D in alternating groups |
| title_full |
Conjugacy classes of p-cycles of type D in alternating groups |
| title_fullStr |
Conjugacy classes of p-cycles of type D in alternating groups |
| title_full_unstemmed |
Conjugacy classes of p-cycles of type D in alternating groups |
| title_sort |
conjugacy classes of p-cycles of type d in alternating groups |
| publishDate |
2022 |
| url |
http://hdl.handle.net/11086/25562 |
| work_keys_str_mv |
AT fantinofernandoamado conjugacyclassesofpcyclesoftypedinalternatinggroups |
| bdutipo_str |
Repositorios |
| _version_ |
1764820391428096005 |