Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos
Fil: Roccia, Bruno. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina.
Autores principales: | , , , |
---|---|
Formato: | conferenceObject |
Lenguaje: | Español |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | http://hdl.handle.net/11086/25071 |
Aporte de: |
id |
I10-R141-11086-25071 |
---|---|
record_format |
dspace |
spelling |
I10-R141-11086-250712023-08-30T13:56:19Z Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos Roccia, Bruno Preidikman, Sergio Bossio, Guillermo Massa, Julio Superficies tridimensionales Superficies geométricas tridimensionales Esfera Parametrización de superficies Fil: Roccia, Bruno. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. Fil: Roccia, Bruno. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Fil: Roccia, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Bossio, Guillermo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Fil: Bossio, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Massa, Julio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. En este artículo se describe un método para evaluar las propiedades másicas de una superficie de forma arbitraria embebida en el espacio tridimensional mediante la utilización de una técnica estándar de parametrización de superficies, y de elementos finitos isoparámetricos para evaluar las integrales resultantes. El procedimiento para llevar a cabo dicho cálculo se puede resumir en tres pasos fundamentales: i) discretización, mediante elementos finitos, de la superficie material; ii) evaluación de las integrales a nivel del elemento maestro; y (iii) cómputo del valor de las magnitudes de interés para ?toda la superficie?. El procedimiento propuesto fue validado contrastando los resultados numéricos con la solución analítica (exacta) para el caso de un cono y una esfera, donde se obtuvieron resultados muy precisos. Fil: Roccia, Bruno. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. Fil: Roccia, Bruno. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Fil: Roccia, Bruno. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Preidikman, Sergio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. Fil: Preidikman, Sergio. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Bossio, Guillermo. Universidad Nacional de Río Cuarto. Facultad de Ingeniería; Argentina. Fil: Bossio, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Fil: Massa, Julio. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. Matemática Aplicada 2022-05-19T13:55:56Z 2022-05-19T13:55:56Z 2013 conferenceObject http://hdl.handle.net/11086/25071 spa Attribution-NonCommercial-ShareAlike 4.0 International https://creativecommons.org/licenses/by-nc-sa/4.0/ Electrónico y/o Digital |
institution |
Universidad Nacional de Córdoba |
institution_str |
I-10 |
repository_str |
R-141 |
collection |
Repositorio Digital Universitario (UNC) |
language |
Español |
topic |
Superficies tridimensionales Superficies geométricas tridimensionales Esfera Parametrización de superficies |
spellingShingle |
Superficies tridimensionales Superficies geométricas tridimensionales Esfera Parametrización de superficies Roccia, Bruno Preidikman, Sergio Bossio, Guillermo Massa, Julio Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
topic_facet |
Superficies tridimensionales Superficies geométricas tridimensionales Esfera Parametrización de superficies |
description |
Fil: Roccia, Bruno. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Estructuras; Argentina. |
format |
conferenceObject |
author |
Roccia, Bruno Preidikman, Sergio Bossio, Guillermo Massa, Julio |
author_facet |
Roccia, Bruno Preidikman, Sergio Bossio, Guillermo Massa, Julio |
author_sort |
Roccia, Bruno |
title |
Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
title_short |
Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
title_full |
Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
title_fullStr |
Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
title_full_unstemmed |
Cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
title_sort |
cálculo de propiedades másicas de superficies de forma arbitraria mediante elementos finitos isoparamétricos |
publishDate |
2022 |
url |
http://hdl.handle.net/11086/25071 |
work_keys_str_mv |
AT rocciabruno calculodepropiedadesmasicasdesuperficiesdeformaarbitrariamedianteelementosfinitosisoparametricos AT preidikmansergio calculodepropiedadesmasicasdesuperficiesdeformaarbitrariamedianteelementosfinitosisoparametricos AT bossioguillermo calculodepropiedadesmasicasdesuperficiesdeformaarbitrariamedianteelementosfinitosisoparametricos AT massajulio calculodepropiedadesmasicasdesuperficiesdeformaarbitrariamedianteelementosfinitosisoparametricos |
_version_ |
1782013901649477632 |