Invariants of complex structures on nilmanifolds
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the...
Guardado en:
| Autor principal: | |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2022
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/22155 http://dx.doi.org/10.5817/AM2015-1-27 |
| Aporte de: |
| id |
I10-R141-11086-22155 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms |
| spellingShingle |
Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms Rodríguez Valencia, Edwin Alejandro Invariants of complex structures on nilmanifolds |
| topic_facet |
Complex Nilmanifolds Nilpotent Lie groups Minimal metrics Pfaffian forms |
| description |
Let (N, J) be a simply connected 2n-dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving rise to a great deal of invariants. We show how to use a Riemannian invariant: the eigenvalues of the Ricci operator, polynomial invariants and discrete invariants to give an alternative proof of the pairwise non-isomorphism between the structures which have appeared in the classification of abelian complex structures on 6-dimensional nilpotent Lie algebras given in [1]. We also present some continuous families in dimension 8. |
| format |
article |
| author |
Rodríguez Valencia, Edwin Alejandro |
| author_facet |
Rodríguez Valencia, Edwin Alejandro |
| author_sort |
Rodríguez Valencia, Edwin Alejandro |
| title |
Invariants of complex structures on nilmanifolds |
| title_short |
Invariants of complex structures on nilmanifolds |
| title_full |
Invariants of complex structures on nilmanifolds |
| title_fullStr |
Invariants of complex structures on nilmanifolds |
| title_full_unstemmed |
Invariants of complex structures on nilmanifolds |
| title_sort |
invariants of complex structures on nilmanifolds |
| publishDate |
2022 |
| url |
http://hdl.handle.net/11086/22155 http://dx.doi.org/10.5817/AM2015-1-27 |
| work_keys_str_mv |
AT rodriguezvalenciaedwinalejandro invariantsofcomplexstructuresonnilmanifolds |
| bdutipo_str |
Repositorios |
| _version_ |
1764820392096038916 |