A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive)...
Guardado en:
| Autores principales: | , , |
|---|---|
| Formato: | article |
| Lenguaje: | Inglés |
| Publicado: |
2021
|
| Materias: | |
| Acceso en línea: | http://hdl.handle.net/11086/20821 https://doi.org/10.1051/m2an/2014010 |
| Aporte de: |
| id |
I10-R141-11086-20821 |
|---|---|
| record_format |
dspace |
| institution |
Universidad Nacional de Córdoba |
| institution_str |
I-10 |
| repository_str |
R-141 |
| collection |
Repositorio Digital Universitario (UNC) |
| language |
Inglés |
| topic |
Elliptic problems Point sources A posteriori error estimates Finite elements Weighted Sobolev spaces |
| spellingShingle |
Elliptic problems Point sources A posteriori error estimates Finite elements Weighted Sobolev spaces Agnelli, Juan Pablo Garau, Eduardo Mario Morin, Pedro A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| topic_facet |
Elliptic problems Point sources A posteriori error estimates Finite elements Weighted Sobolev spaces |
| description |
In this article we develop a posteriori error estimates for second order linear elliptic problems with point sources in two- and three-dimensional domains. We prove a global upper bound and a local lower bound for the error measured in a weighted Sobolev space. The weight considered is a (positive) power of the distance to the support of the Dirac delta source term, and belongs to the Muckenhoupt’s class A2. The theory hinges on local approximation properties of either Clément or Scott–Zhang interpolation operators, without need of modifications, and makes use of weighted estimates for fractional integrals and maximal functions. Numerical experiments with an adaptive algorithm yield optimal meshes and very good effectivity indices. |
| format |
article |
| author |
Agnelli, Juan Pablo Garau, Eduardo Mario Morin, Pedro |
| author_facet |
Agnelli, Juan Pablo Garau, Eduardo Mario Morin, Pedro |
| author_sort |
Agnelli, Juan Pablo |
| title |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| title_short |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| title_full |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| title_fullStr |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| title_full_unstemmed |
A posteriori error estimates for elliptic problems with Dirac measure terms in weighted spaces |
| title_sort |
posteriori error estimates for elliptic problems with dirac measure terms in weighted spaces |
| publishDate |
2021 |
| url |
http://hdl.handle.net/11086/20821 https://doi.org/10.1051/m2an/2014010 |
| work_keys_str_mv |
AT agnellijuanpablo aposteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces AT garaueduardomario aposteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces AT morinpedro aposteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces AT agnellijuanpablo posteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces AT garaueduardomario posteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces AT morinpedro posteriorierrorestimatesforellipticproblemswithdiracmeasuretermsinweightedspaces |
| bdutipo_str |
Repositorios |
| _version_ |
1764820392007958530 |