|
|
|
|
LEADER |
01608nam a22003015a 4500 |
001 |
38030 |
003 |
AR-SrUBC |
005 |
20210617185505.0 |
007 |
t||||||||||||| |
008 |
150822m|||||||||||#||||r|||||||||||eng|| |
020 |
|
|
|a 0226115488
|
020 |
|
|
|a 0226115496
|
040 |
|
|
|a AR-SrUBC
|b eng
|e rcaa2
|
080 |
|
|
|a 517.95=20
|2 2000 ES
|
100 |
1 |
|
|a Constantin, Peter,
|d 1951-.
|9 77544
|
245 |
1 |
0 |
|a Navier-Stokes equations.
|c Peter Constantin and Ciprian Foias.
|
260 |
|
|
|a Chicago :
|b University of Chicago Press,
|c 1989.
|
300 |
|
|
|a ix, 190 p. ;
|c 21 cm.
|
336 |
|
|
|a texto
|2 rdacontent
|
337 |
|
|
|a sin mediación
|2 rdamedia
|
338 |
|
|
|a volumen
|2 rdacarrier
|
490 |
|
0 |
|a Chicago lectures in mathematics
|
505 |
0 |
0 |
|a Contenido: Notation and preliminary material. The stokes equations. Existence and uniqueness of weak solutions. Regularity of solutions of the stokes equations. The stokes operator. The navier-stokes equations. Inequalities for the nonlinear term. Stationary solutions to the navier-stokes equations. Weak solutions of the navier-stokes equations. Strong solutions. Further results concerning weak and strong solutions. Vanishing viscosity limits. Analyticity and bacward uniqueness. Exponential decay of volume elements. Global lyapunov exponents. Hausdorff and fractal dimension of the universal attractor. Inertial manifolds.
|
650 |
|
7 |
|a ECUACIONES DE NAVIER-STOKES
|2 lemb3
|9 77377
|
650 |
|
7 |
|a ECUACIONES DIFERENCIALES PARCIALES
|2 lemb3
|9 15496
|
700 |
1 |
|
|a Foias, Ciprian
|9 77545
|
942 |
|
|
|2 cdu
|b 2015-08-22
|c BK
|d 041663
|h 517.95=20
|i CONn
|z NO
|6 5179520_CONN
|
999 |
|
|
|c 38030
|d 38030
|